In a controlled experiment, the factor tested is called the A. constant. B. independent variable. C. dependent variable. D. control.
In a controlled experiment, the factor tested is called the [tex]\boxed{{\text{B}}{\text{. independent variable}}}[/tex].
Further Explanation:
A procedure that is performed in order to support, disprove or validate a hypothesis is known as an experiment. A hypothesis is an idea or thought that needs to be tested with the help of experiments.
Types of experiments:
1. Controlled experiments
The type of experiment that is used for comparing the results of experimental samples with the control samples is called a controlled experiment. Such experiments involve a drug trial. The experimental group will be the one that receives the drug and the other one receiving regular treatment will be the controlled group. The experimental group is also known as the treatment group. Another example of controlled experiments is the protein assay.
2. Natural experiments
These are also called quasi-experiments. These are performed by exposing individuals to the conditions that are governed by nature. Experiments involving weather changes and natural disasters are examples of natural experiments.
3. Field experiments
These are quite different from the experiments performed in the laboratory. Such experiments are usually performed in social studies. These have higher external validity as compared to normal lab experiments. Economic analysis of health and education are some examples of such experiments.
The variable that can be changed by the investigator is called the independent variable while the variable is the one that is affected by the changes in experimental conditions. All the variables in a controlled experiment are kept constant; except for the factor that is to be tested. Such a factor is called the independent variable or the experimental variable.
Learn More:
What is the main purpose of conducting experiments? https://brainly.com/question/5096428 What is the percentage error in the experiment? https://brainly.com/question/11181911
Answer Details:
Grade: Senior School
Chapter: Keys to studying chemistry
Subject: Chemistry
Keywords: experiment, hypothesis, controlled experiment, natural experiment, field experiments, dependent variable, independent variable, quasi-experiments.
Nonmetals tend to form what kind of ions?
1. Which processes are taking place in the system represented by the following equation?
2CO(g) + O2(g) →← 2CO2(g)
2. Consider the reaction represented by the equation 2HI(g) →← H2(g) + I2(g). At a temperature of 520 °C, the equilibrium concentration of HI is 0.80 M, of H2 is 0.010 M, and of I2 is 0.010 M. What is the K for the reaction?
The equilibrium constant indicates the ratio of product and reactant concentrations at equilibrium. The processes in the first equation involve the formation and decomposition of gases. The K value for the second equation is calculated using given equilibrium concentrations.
Explanation:The equilibrium constant (K) for a chemical reaction indicates the ratio of the concentrations of the products to the concentrations of the reactants at equilibrium. In the first equation, 2CO(g) + O2(g) → 2CO2(g), the forward reaction is the formation of CO2 from CO(g) and O2(g), while the reverse reaction is the decomposition of CO2(g) into CO(g) and O2(g).
To find the value of K for the reaction 2HI(g) → H2(g) + I2(g), we need to use the given equilibrium concentrations. Using the equation K = [H2][I2]/[HI]^2, we plug in the values to get K = (0.010)(0.010)/(0.80)^2 = 0.00015625.
Final answer:
The reaction represented by the equation 2CO(g) + O2(g) ↔ 2CO2(g) involves the formation and decomposition of carbon dioxide. The equilibrium constant (K) for the reaction 2HI(g) ↔ H2(g) + I2(g) at 520°C is 0.00015625.
Explanation:
The reaction represented by the equation 2CO(g) + O2(g) ↔ 2CO2(g) is an equilibrium reaction. It involves two processes: the formation of carbon dioxide from carbon monoxide and oxygen, and the reverse process where carbon dioxide decomposes to form carbon monoxide and oxygen.
At a temperature of 520°C, we are given the equilibrium concentrations of HI (0.80 M), H2 (0.010 M), and I2 (0.010 M). To find the equilibrium constant (K) for the reaction, we can use the formula:
K = [H2][I2]/[tex][HI]^2[/tex]
Substituting the given concentrations into the formula:
K = (0.010)(0.010)/[tex](0.80)^2[/tex] = 0.00015625
Consider the redox reaction below.
2Al(s) + 6HCl(aq) ----> 2AlCl3(aq) + 3H2(g)
Which statement correctly describes a half-reaction that is taking place?
A) Hydrogen is oxidized from +1 to 0.
B) Chlorine is reduced from –1 to 0.
C) Aluminum is oxidized from 0 to +3.
D) Hydrogen is reduced from 0 to –1.
Answer:
The right answer is C.
Oxidation is the loss of electrons. A loss of electrons will appear as an increase in the positive charge of the element as it is converted to an ion. Here we have aluminum have an oxidation state equals zero as a reactant because it is in the element state. After reacting, it combines with three atoms chlorine where each chlorine atom usually has an oxidation state equals -1, therefore, we have -3 charges which have to be neutralized with the 3+ charges of aluminum.
The statement which correctly describe a half-reaction is option C, i.e., Al is oxidized from 0 to +3. At elemental stage as Al, it possess no charge but, when combined with an electronegative atom aluminum gets positively charged.
What is a redox reaction ?A redox reaction is the combination of oxidation and reduction reaction. Oxidation is the losing electrons and gets into higher oxidation state whereas, reduction is just the opposite where, one species reduces to its lower oxidation state.
All species in their elemental state carries no charge and thus assume an oxidation state of 0. Thus Al and H₂ have no charge. Hydrogen is in +1 oxidation state in HCl and Al is in +3 oxidation state in AlCl₃ since, Cl has a negative charge hence, 3 Cl possess 3 unit of negative charge.
In the overall reaction, Al is thus oxidised from 0 to +3 oxidation state, whereas, H is reduced from +1 to 0. Hence, option A is correct.
To learn more about redox reactions, please refer the below link:
https://brainly.com/question/2671074
#SPJ2
The solubility of barium chromate, bacro4, is 2.81 × 10−3 g/l. calculate the solubility product of this compound.
The solubility product (Ksp) of barium chromate (BaCrO₄) is approximately 1.227 × 10⁻¹⁰.
Given information,
Solubility of barium chromate = 2.81 × 10⁻³ g/l
The molar solubility (S) is the number of moles of the compound that dissolve per liter of solution.
Molar mass of BaCrO₄ = (atomic mass of Ba) + (atomic mass of Cr) + 4 (atomic mass of O)
Molar mass of BaCrO₄ = 137.33 + 51.996 + 4 × 16.00
Molar mass of BaCrO₄= 137.33 + 51.996 + 64.00
Molar mass of BaCrO₄= 253.326 g/mol
Molar solubility (S) = (mass of BaCrO₄/ molar mass of BaCrO₄)
S = (2.81 × 10⁻³)/(253.326 )
S = 1.108 × 10⁻⁵ mol/L
Since the stoichiometric coefficients of BaCrO₄ are 1 for both barium ions (Ba²⁺) and chromate ions (CrO₄²⁻), the solubility product can be calculated as:
Ksp = [Ba²⁺][CrO₄²⁻]
Ksp ≈ 1.108 × 10⁻⁵ × 1.108 × 10⁻⁵
Ksp = 1.227 × 10⁻¹⁰
Learn more about solubility product, here:
https://brainly.com/question/1419865
#SPJ6
0 ml of 0.212 m naoh is neutralized by 13.6 ml of an hcl solution. the molarity of the naoh solution is
I believe the correct volume of 0.212 M NaOH is 25.0 mL and not 0 mL.
Since the reactants are strong base and a strong acid then this is an example of neutralization reaction. The balance chemical reaction is:
NaOH + HCl ---> NaCl + H2O
We can see from the reaction above that the ratio of NaOH to HCl is 1:1. Therefore,
number of moles HCl = (0.212 mol NaOH / L) * 0.025 L * (1 mol HCl / 1 mol NaOH)
number of moles HCl = 0.0053 mol HCl
Molarity is number of moles divided by volume in Liters, therefore the molarity of HCl solution is:
Molarity HCl = 0.0053 mol HCl / 0.0136 L
Molarity HCl = 0.390 M
If we dissolve 25 grams of salt in 251 grams of water, what is the mass of the resulting solution?
Zinc reacts with hydrochloric acid according to this reaction: Zn(s) + 2HCl (aq) → ZnCl2(aq) + H2(g) Which of the following will react the fastest? a. 2.0 gram lump of zinc in 0.10 M hydrochloric acid b. 2.0 gram sample of powdered zinc in 0.10 M hydrochloric acid c. 2.0 gram lump of zinc in 0.50 M hydrochloric acid d. 2.0 gram sample of powdered zinc in 0.50 M hydrochloric acid
Final answer:
The fastest reaction will be option d: a 2.0 gram sample of powdered zinc in 0.50 M hydrochloric acid, due to the greater surface area of the powdered zinc and the higher concentration of the acid.
Explanation:
When zinc metal is submerged into aqueous hydrochloric acid, a chemical reaction occurs that produces zinc chloride and hydrogen gas. The balanced equation for this reaction is:
Zn(s) + 2HCl(aq) → H₂(g) + ZnCl₂(aq)
This reaction is faster when the surface area of the zinc is increased and the concentration of hydrochloric acid is higher. Thus, option d, a 2.0 gram sample of powdered zinc in 0.50 M hydrochloric acid, will react the fastest because the powdered form of zinc has a larger surface area than a lump, allowing more acid to react with it at the same time. Additionally, a higher concentration of hydrochloric acid, such as 0.50 M compared to 0.10 M, will provide more acid particles in the solution to react with the zinc, thus speeding up the reaction.
explain the idea that the greek philosopher democritus proposed
Democritus, a Greek philosopher, proposed the idea of atomos or atomon - tiny, indivisible, solid objects - as the building blocks of all matter in the universe. His atomic theory challenged the prevailing belief of the time and laid the foundation for modern understanding of matter.
Explanation:About 2,500 years ago, Democritus, a Greek philosopher, proposed the idea that all matter in the universe is made up of tiny, indivisible, solid units called atomos or atomon. He believed that these atoms were the building blocks of all substances and that they cannot be further divided. This theory challenged the prevailing belief of the time that the universe was a single, unchangeable entity. Democritus' atomic theory laid the foundation for modern understanding of matter and influenced later scientists such as John Dalton and Albert Einstein.
In a strong acid–strong base titration (both monoprotic), if 25.0 milliliters of the base is required to completely neutralize 25.0 milliliters of the acid, which of the following conclusions can you make?
A)The concentartion of the acid is higher than that of the base.
B)The concentration of the acid is the same as that of the base.
C)The concentration of the base is higher than that of the acid.
D)The equivalence point will occur arround a pH of 2.5.
The concentration of the acid is the same as that of the base.
If equal volumes of acid and base are required, you can conclude that the concentrations must be the same.
How many chlorine atoms are in 5.0 g chloral hydrate?
To find the number of chlorine atoms in 5.0 g of chloral hydrate, calculate the moles of chloral hydrate and then use Avogadro's number to find the atoms. There are approximately 5.46 x 10²² chlorine atoms in 5.0 g of chloral hydrate.
Explanation:The question asks us to determine the number of chlorine atoms in 5.0 g of chloral hydrate. To find this, we need the molar mass of chloral hydrate (C₂H₃Cl₃O₂) and the molar mass of chlorine. The atomic mass of chlorine is 35.45 u. Chloral hydrate contains three chlorine atoms per molecule.
First, calculate the molar mass of chloral hydrate:
C (12.01 u) x 2 = 24.02 uH (1.008 u) x 3 = 3.024 uCl (35.45 u) x 3 = 106.35 uO (16.00 u) x 2 = 32.00 uTotal molar mass = 165.394 u.
Next, we calculate the amount (in moles) of chloral hydrate:
5.0 g / 165.394 g/mol = 0.0302 mol. Since each molecule of chloral hydrate contains three chlorine atoms, we multiply the number of moles by Avogadro's number (6.022 x 10²³ atoms/mol) and then by three:
0.0302 mol x 3 x 6.022 x 10²³ atoms/mol = 5.46 x 10²² chlorine atoms.
Therefore, there are approximately 5.46 x 10²² chlorine atoms in 5.0 g of chloral hydrate.
Learn more about Calculating Chlorine Atoms here:https://brainly.com/question/30437867
#SPJ3
The boiling point of a solution will ______ and the vapor pressure will _______ with a(n)_____ in the amount of dissolved solute.
3cu(s) + 8hno3(aq) ——> 3cu(no3)2(aq) + 2no(g) + h2o(l) whichr eactan is the reducing agent?
Answer:
I think it’s CU
Explanation:
The system that shows a decrease in entropy (disorder) is
Answer: water freezing.
Explanation:
_____ are soluble complement fragments that mediate localized and systemic inflammatory responses.
How many moles of NaCl are required to prepare 0.80 L of 6.4 M NaCl
How many different 3d states does the hydrogen atom have?
Different 3d states that does the hydrogen atom have are 10.
What are energy states of atom?The energy state is also familiarly known as the energy level plays a vital role in explaining the atomic structure. The energy levels or the energy state is any discrete (definite) value from a set of values of total energy for a subatomic particle confined by a force to limited space or for a system of such particles, for example like an atom or a nucleus.
The energy level is an old name used with the electron orbits of the Bohr model before quantum mechanics. In the quantum mechanical treatment and because of the uncertainty principle, thus we can not have orbits and hence the term energy states are used instead, thus technically there is not much of a difference between energy levels and energy states.
An electron in a hydrogen atom would have 10 states for a 3d orbital, like any other element.
n = 3, l = 2, in one of ml = 2, 1, 0, -1, -2 each with ms = -½ or +½ or a total of 10 possible states.
None of these are a ground state of an electron in the hydrogen atom.
Therefore, Different 3d states that does the hydrogen atom have are 10.
Learn more about energy state, here:
https://brainly.com/question/2289096
#SPJ3
What is the density of sulfur dioxide (so2) at 1.2 atmospheres and 271 kelvin? show all of the work used to solve this problem?
To find the density of sulfur dioxide (SO2) at 1.2 atmospheres and 271 Kelvin, we can use the ideal gas law equation. We need to know the molar mass of sulfur dioxide, which is 64.06 g/mol. Using the ideal gas law equation, we can calculate the volume of SO2 and find the density.
Explanation:To find the density of sulfur dioxide (SO2) at 1.2 atmospheres and 271 Kelvin, we can use the ideal gas law equation:
density = (mass of SO2) / (volume of SO2)
We need to know the molar mass of sulfur dioxide, which is 64.06 g/mol. We also need to convert the given pressure to Pascals (Pa) and temperature to Kelvin (K).
Using the ideal gas law equation, we can calculate the volume of SO2:
volume of SO2 = (mass of SO2) / (density)
Finally, we substitute the given values into the equation to find the density:
density = mass of SO2 / volume of SO2
Which of the following is not a correct chemical equation for a double replacement reaction?
2 HNO3 + Mg(OH)2 yields 2 H2O + Mg(NO3)2
H3PO4 + 3 NaF yields 3 HF + Na3PO4
2 KNO2 + BaSO4 yields K2SO4 + Ba(NO2)2
Ca + 2H2O yields Ca(OH)2 + H2
Give the set of four quantum numbers that could represent the electron lost to form the k ion from the k atom
The electron lost to form a potassium ion from a potassium atom is from the 4s orbital. Its set of quantum numbers, which describe its state, are (4,0,0,±1/2).
Explanation:The electron lost to form the potassium (K) ion from the K atom would be the electron in the highest energy level, or the outermost shell, of the atom. This shell, also called the valence shell, contains only one electron for Potassium. This electron can be characterized by its four quantum numbers: the principal quantum number (n), the azimuthal quantum number (l), the magnetic quantum number (m), and the spin quantum number (ms).
For potassium, this electron resides in the 4s orbital. So the set of quantum numbers for this electron would be: n=4 (fourth energy level), l=0 (s orbital), m=0 (orientation of the orbital), and ms=±1/2 (two possible spin states). Thus, the set of quantum numbers for the electron lost to form the K ion from the K atom is (4,0,0,±1/2).
Learn more about Quantum Numbers here:https://brainly.com/question/27152536
#SPJ3
How many molecules of water are needed to completely hydrolyze a polymer that is 11 monomers long?
Ten molecules of water are required to completely hydrolyze a polymer of 11 monomers.
What is a polymer?A polymer can be described as a macromolecule which essentially is a combination of many subunits. From Polypropylene which is used widely around the world as plastic to the strand of our DNA, which is a naturally occurring biopolymer.
Polymers can be naturally found in plants and animals called natural polymers or can be man-made called synthetic polymers. Different types of polymers posses different physical and chemical properties.
Semisynthetic polymers are those which can be derived from naturally occurring polymers and can undergo further modification such as cellulose nitrate, and cellulose acetate.
Polymers can be broken down into monomers is called hydrolysis of polymer, which is a reaction in which a water molecule is utilized during the breakdown.
Given polymer has 11 monomers which are connected with each other through 10 bond links that can be broken by ten water molecules.
Learn more about polymer, here:
https://brainly.com/question/14600435
#SPJ5
Determine the number of atoms in 1.85 ml of mercury. (the density of mercury is 13.5 g/ml.)
To determine the number of atoms in 1.85 ml of mercury, convert the volume to mass using the density of mercury. Then, calculate the number of moles of mercury using its atomic mass. Finally, use Avogadro's number to calculate the number of atoms in the given amount of mercury.
Explanation:To determine the number of atoms in 1.85 ml of mercury, we need to convert the volume to mass using the density of mercury. The density of mercury is 13.5 g/ml. So, the mass of 1.85 ml of mercury is 1.85 ml x 13.5 g/ml = 24.975 g.
Next, we need to calculate the number of moles of mercury using its atomic mass. The atomic mass of mercury is 200.59 g/mol. To find the number of moles, we divide the mass (in grams) by the molar mass: 24.975 g / 200.59 g/mol = 0.1245 mol.
Finally, we can calculate the number of atoms in 0.1245 mol of mercury. Avogadro's number tells us that there are 6.022 x 10^23 atoms in 1 mol of any substance. So, the number of atoms in 0.1245 mol of mercury is 0.1245 mol x 6.022 x 10^23 atoms/mol = 7.49 x 10^22 atoms.
How many moles of hydrogen gas would be needed to react with excess carbon dioxide to produce 30.6 moles of water vapor?
Final answer:
To produce 30.6 moles of water vapor from the reaction of hydrogen gas with excess carbon dioxide, 30.6 moles of hydrogen gas are required according to the balanced chemical equation with a 1:1 molar ratio of hydrogen to water.
Explanation:
To determine how many moles of hydrogen gas would be needed to react with excess carbon dioxide to produce 30.6 moles of water vapor, we need the balanced chemical equation for the reaction between hydrogen gas (H2) and carbon dioxide (CO2) to produce water (H2O) and carbon monoxide (CO).
To determine the number of moles of hydrogen gas needed to react with excess carbon dioxide to produce 30.6 moles of water vapor, we need to use the balanced chemical equation for the reaction.
The balanced equation is:
2H2(g) + CO2(g) -> 2H2O(g)
From the equation, we can see that 2 moles of hydrogen gas react with 1 mole of carbon dioxide to produce 2 moles of water vapor. Therefore, the ratio of hydrogen gas to water vapor is 2:2.
Since we are given that 30.6 moles of water vapor are produced, we can calculate the moles of hydrogen gas as:
(30.6 moles of water vapor) x (2 moles of hydrogen gas / 2 moles of water vapor) = 30.6 moles
Therefore, 30.6 moles of hydrogen gas would be needed to react with excess carbon dioxide to produce 30.6 moles of water vapor.
H2(g) + CO2(g) → H2O(g) + CO(g)
From the balanced equation, we see that the molar ratio of hydrogen gas to water vapor is 1:1. Therefore, to produce 30.6 moles of water vapor, 30.6 moles of hydrogen gas are needed:
30.6 moles H2O × 1 mole H2/1 mole H2O = 30.6 moles H2
Thus, 30.6 moles of hydrogen gas are required to react with excess carbon dioxide to produce 30.6 moles of water vapour.
Tina conducted an experiment to test her hypothesis. Her hypothesis was that by crushing aspirin and putting it into potting soil increases the growth rate of tomato plants. The results of the experiment show that there was no significant difference in the growth rates between the control and the experimental groups. What should Tina do with the results of this experiment?
What is one of the products produced when al(no3)3 and cao react together? alo2 cano3 al2o3 ca(no3)3?
Answer: Option (c) is the correct answer.
Explanation:
When [tex]Al(NO_{3})_{3}[/tex] reacts with CaO then it results in the formation of aluminium oxide and calcium nitrate.
The chemical reaction equation will be as follows.
[tex]2Al(NO_{3})_{3} + 3CaO \rightarrow Al_{2}O_{3} + 3Ca(NO_{3})_{2}[/tex]
Thus, we can conclude that out of the given options [tex]Al_{2}O_{3}[/tex] is one of the products produced when [tex]Al(NO_{3})_{3}[/tex] and CaO react together.
What substance is needed to reverse a condensation reaction?
A blood sample is diluted by placing 0.2ml of the blood in a tube and filling the tube to the 5ml mark with a solution. what percent of the solution represents whole blood?
A volume of 90.0 ml of aqueous potassium hydroxide (koh) was titrated against a standard solution of sulfuric acid (h2so4). what was the molarity of the koh solution if 13.7 ml of 1.50 m h2so4 was needed? the equation is
How many liters of water must be added to 5.40 g of sodium nitrate to create a solution that has a concentration of 3.81 g/L?
Answer: The volume of water that must be added will be 1.417 L.
Explanation:
Concentration of a substance is defined as mass of solute (in grams) present in the given volume of a solution (in L).
The equation representing concentration is given as:
[tex]\text{Concentration of solute}=\frac{\text{Mass of solute}}{\text{Volume of solvent}}[/tex]
We are given:
Concentration = 3.81 g/L
Mass of sodium nitrate = 5.40 g
Putting values in above equation, we get:
[tex]3.81g/L=\frac{5.40g}{\text{Volume of water}}\\\\\text{Volume of water}=1.417L[/tex]
Hence, the volume of water that must be added will be 1.417 L.
A salt sample is placed into some water and nearly all of it dissolve without stirring and heating. the resulting solution is