While David was riding his bike around the circular cul-de-sac by his house, he wondered if the constant circular motion was having any effect on his tires. What would be the best way for David to investigate this?
A.
Measure the circumference of the tire before and after riding.
B.
Measure the total distance traveled on his bike and divide this by how long it took him.
C.
Measure the wear on his treads before and after riding a certain number of laps.
D.
Time how long it takes him to ride 5 laps around his cul-de-sac.

Answers

Answer 1

Answer:

C.

Measure the wear on his treads before and after riding a certain number of laps.

Answer 2

Answer:

Measure the wear on his treads before and after riding a certain number of laps.

Explanation:

By riding in a circular motion the inside of the tire will be in contact with the road more than the outside of the tire. Thus, to see if the constant circular motion had any effect on his tires David should measure the tread depth on both the inside and the outside of the tires before the experiment and measure the inside and the outside of the tires (at the same location on the tires) after the experiment. Then he can compare the tread loss on the inside of the tire to the tread loss on the outside of the tire.


Related Questions

A muon has a rest mass energy of 105.7 MeV, and it decays into an electron and a massless particle. If all the lost mass is converted into the electron’s kinetic energy, what is the electron’s velocity?

Answers

Answer:

The electron’s velocity is 0.9999 c m/s.

Explanation:

Given that,

Rest mass energy of muon = 105.7 MeV

We know the rest mass of electron = 0.511 Mev

We need to calculate the value of γ

Using formula of energy

[tex]K_{rel}=(\gamma-1)mc^2[/tex]

[tex]\dfrac{K_{rel}}{mc^2}=\gamma-1[/tex]

Put the value into the formula

[tex]\gamma=\dfrac{105.7}{0.511}+1[/tex]

[tex]\gamma=208[/tex]

We need to calculate the electron’s velocity

Using formula of velocity

[tex]\gamma=\dfrac{1}{\sqrt{1-(\dfrac{v}{c})^2}}[/tex]

[tex]\gamma^2=\dfrac{1}{1-\dfrac{v^2}{c^2}}[/tex]

[tex]\gamma^2-\gamma^2\times\dfrac{v^2}{c^2}=1[/tex]

[tex]v^2=\dfrac{1-\gamma^2}{-\gamma^2}\times c^2[/tex]

Put the value into the formula

[tex]v^2=\dfrac{1-(208)^2}{-208^2}\times c^2[/tex]

[tex]v=c\sqrt{\dfrac{1-(208)^2}{-208^2}}[/tex]

[tex]v=0.9999 c\ m/s[/tex]

Hence, The electron’s velocity is 0.9999 c m/s.

You and your roommate are moving to a city360 mi away. Your roommate drives a rental truck at a constant 50 mi/h , and you drive your car at 60 mi/h . The two of you begin the trip at the same instant. An hour after leaving, you decide to take a short break at a rest stop

If you are planning to arrive at your destination a half hour before your roommate gets there, how long can you stay at the rest stop before resuming your drive?

Answers

Answer:

42 minutes

Explanation:

First, let us find out the time required by the roommate, who is driving the truck, to reach the city.

We know that,

[tex]time=\frac{distance}{speed} =\frac{360}{50} hrs=7.2hrs[/tex]

Now, you are planning to rest a bit after traveling for an hour. So,

distance covered in that 1 hour = [tex]60mi/h\times1h=60 miles[/tex]

time required by you to cover the total distance = [tex]\frac{360mi}{60mi/h} =6hours[/tex]

If you wish reach at the destination half an hour (0.5 h) before your roommate, you can expend a total of [tex]7.2-0.5=6.7hours[/tex] throughout your journey.

Hence, you can rest for  [tex]6.7-6=0.7hours=(0.7\times60)minutes=42minutes[/tex]

Final answer:

After driving 60 miles in the first hour and intending to arrive half an hour before your roommate who travels at 50 mph, you can afford a break time of 30 minutes at the rest stop.

Explanation:

The subject of your question is

relative speed

and

time management

, which falls under Mathematics. Your overall travelling speed is 60 mph. After driving for an hour, you decide to take a break at a rest stop. In that one hour, you've driven 60 miles, so there are 300 miles left to the destination.  Your roommate, who doesn't stop for a break, continues to drive at 50 mph. You want to arrive half an hour before she does, which means you essentially have her travel time less 30 minutes to reach the destination. Because her speed in relation to the remaining distance is constant, her remaining travel time is 300 miles divided by 50 mph which equals to 6 hours. So, you actually have 6 - 0.5 = 5.5 hours to travel the remaining 300 miles including your rest stop. Considering your speed of 60 mph, it will take you 300/60 = 5 hours to reach the destination. Therefore, the length of the break you can take while still beating your roommate to the destination is 5.5 hours minus 5 hours, which is

30 minutes

.

Learn more about relative speed here:

https://brainly.com/question/32038972

#SPJ3

A block with a mass of 8.7 kg is dropped from rest from a height of 8.7 m, and remains at rest after hitting the ground. 1)If we consider the system to consist of the block, the ground, and the surrounding air, what is the change in the internal energy of the system

Answers

To solve this problem we will apply the concepts related to gravitational potential energy.

This can be defined as the product between mass, gravity and body height.

Mathematically it can be expressed as

[tex]\Delta P = mgh[/tex]

[tex]\Delta P = (8.7)(9.8)(3)[/tex]

[tex]\Delta P = 255.78J[/tex]

Therefore the change in the internal energy of the system is 255.78

The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the engine compressor without any work or heat interactions. Calculate the velocity at the exit of a diffuser when air at 100 kPa and 30°C enters it with a velocity of 350 m/s and the exit state is 200 kPa and 90°C.

Answers

Explanation:

Expression for energy balance is as follows.

        [tex]\Delta E_{system} = E_{in} - E_{out}[/tex]

or,          [tex]E_{in} = E_{out}[/tex]

Therefore,  

         [tex]m(h_{1} \frac{v^{2}_{1}}{2}) = m (h_{2} \frac{V^{2}_{2}}{2})[/tex]

          [tex]h_{1} + \frac{V^{2}_{1}}{2} = h_{2} + \frac{V^{2}_{2}}{2}[/tex]

Hence, expression for exit velocity will be as follows.

           [tex]V_{2} = [V^{2}_{1} + 2(h_{1} - h_{2})^{0.5}[/tex]

                      = [tex]V^{2}_{1} + 2C_{p}(T_{1} - T_{2})]^{0.5}[/tex]

As [tex]C_{p}[/tex] for the given conditions is 1.007 kJ/kg K. Now, putting the given values into the above formula as follows.

       [tex]V_{2} = V^{2}_{1} + 2C_{p}(T_{1} - T_{2})]^{0.5}[/tex]                    

                  = [tex][(350 m/s)^{2} + 2(1.007 kJ/kg K) (30 - 90) K \frac{1000 m^{2}/s^{2}}{1 kJ/kg}]^{0.5}[/tex]

                 = 40.7 m/s

Thus, we can conclude that velocity at the exit of a diffuser under given conditions is 40.7 m/s.

An astronaut is in space with a baseball and a bowling ball. The astronaut gives both objects an equal push in the same direction. Does the baseball have the same inertia as the bowling ball? Why? Does the baseball have the same acceleration as the bowling ball from the push? Why? If both balls are traveling at the same speed, does the baseball have the same momentum as the bowling ball?

Answers

Answer:

Explanation:

Given

Astronaut in space gives an equal push to baseball and bowling ball.

Since the mass of the bowling ball is more than the baseball so inertia associated with a bowling ball is more as compared to baseball

Force applied on baseball and bowling ball is the same so the acceleration of baseball will be more because the mass of baseball is less.

[tex]Force=mass\times acceleration[/tex]

If both are traveling with the same speed then momentum associated with them is given by-product of mass and velocity

Since the mass of the bowling ball is more, therefore, the momentum of bowling ball is more as compared to baseball

A motorist is driving at 20m/s when she sees that a traffic light 200m ahead has just turned red. She knows that this light stays red for 15s, and she wants to reach the light just as it turns green again. It takes her 1.0s to step on the brakes and begin slowing. What is her speed as she reaches the light at the instant it turns green?

Answers

Answer:

5.71428571422 m/s

Explanation:

u = Initial velocity = 20 m/s

v = Final velocity

s = Displacement

a = Acceleration

Time taken = 15-1 = 14 s

Distance traveled in 1 second = [tex]20\times 1=20\ m[/tex]

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 200-20=20\times 14+\frac{1}{2}\times a\times 14^2\\\Rightarrow a=\frac{2(180-20\times14)}{14^2}\\\Rightarrow a=-1.02040816327\ m/s^2[/tex]

[tex]v=u+at\\\Rightarrow v=20-1.02040816327\times 14\\\Rightarrow v=5.71428571422\ m/s[/tex]

The speed as she reaches the light at the instant it turns green is 5.71428571422 m/s

The final speed of the motorist as she reaches the light is 5.72 m/s

To calculate the speed of the motorist as she reaches the light, we need to first find the deceleration of the motorist.

Formula:

S₁ = ut₁.............. Equation 1

Where:

S₁ = displacement of the motorist as its slows downu = initial velocityt₁ = time it takes to slow down.

Given:

u = 20 m/st₁ = 1

Therefore,

S₁ = 20(1) = 20 m

Then,

S = 200-20S = 180 m

Where:

S = distance covered by the motorist before the brake is applied.

we use the formula below to calculate the deceleration of the motorist.

S  = ut+at²/2........... Equation 2

Where:

a = deceleration of the motorist.

Given:

u = 20 m/st = 15-1 = 14 sS = 180 m

Substitute these values into equation 2

180 = 20(14)+a(14²)/2180 = 280+98a

Solve for a

98a = 180-28098a = -100a = -100/98a = -1.02 m/s²

Finally, we use the formula below to get the speed of the motorist as she reaches the light.

v = u+at............ Equation 3

Given:

u = 20 m/sa = -1.02 m/s²t = 14 s

Substitute these values into equation 3

v = 20+(-1.02×14)v = 20-14.28v = 5.72 m/s.

Hence, The final speed of the motorist as she reaches the light is 5.72 m/s

Learn more about speed here: https://brainly.com/question/4931057

Why did you measure 20 cycles of the pendulum motion to determine the period, rather than just one cycle?

Answers

Final answer:

Measuring 20 cycles of the pendulum motion to determine the period instead of just one cycle allows for a more accurate and representative measurement. By averaging out any errors or variations in the measurement process, the value for the period of the pendulum is more precise. Measuring multiple cycles also helps identify any potential changes in the period over time.

Explanation:

The reason we measure 20 cycles of the pendulum motion to determine the period, rather than just one cycle, is to obtain a more accurate and representative measurement of the period. By measuring multiple cycles, we can average out any errors or variations in the measurement process, resulting in a more precise value for the period of the pendulum.

For example, if we were to measure only one cycle of the pendulum, any small errors in the timing or counting of the cycles could significantly affect our measurement. However, by measuring 20 cycles and then dividing the total time by 20, we can minimize these errors and obtain a more reliable measurement of the period.

Furthermore, measuring multiple cycles allows us to observe any potential changes in the period over time. In certain situations, the period of a pendulum may vary slightly due to factors such as air resistance or changes in the length of the string. By measuring multiple cycles, we can identify and account for any such variations, providing a more comprehensive understanding of the pendulum's behavior.

What is the freezing point of an aqueous solution that boils at 101 degrees C? Kfp = 1.86 K/m and Kbp = 0.512 K/m. Enter your answer to 2 decimal places.

Answers

Answer:

-3.63 degree Celsius

Explanation:

We are given that

Boiling point of solution=[tex]T_b=101^{\circ}[/tex] C

Boiling point water=100 degree Celsius

[tex]K_f=1.86K/m[/tex]

[tex]K_b=0.512 K/m[/tex]

[tex]\Delta T_b=T-T_0[/tex]

Where [tex]T[/tex]=Boiling point of solution

[tex]T_0=[/tex]Boiling point of pure solvent

[tex]\Delta T_b=101-100=1^{\circ}[/tex]C

[tex]\Delta T_b=k_bm[/tex]

Using the formula

[tex]1=0.512\times m[/tex]

Molality,[tex]m=\frac{1}{0.512}[/tex] m

[tex]\Delta T_f=k_fm[/tex]

Using the formula

[tex]\Delta T_f=\frac{1}{0.512}\times 1.86[/tex]

[tex]\Delta T_f=3.63 C[/tex]

We know that

[tex]\Delta T_f=T_0-T_1[/tex]

Where [tex]T_0[/tex] =Freezing point of solvent

[tex]T_1=[/tex] Freezing point of solution

Using the formula

[tex]3.63=0-T_1[/tex]

Freezing point of water=0 degree Celsius

[tex]T_1=0-3.63=-3.63 C[/tex]

Hence, the freezing point of solution=-3.63 degree Celsius

Final answer:

The freezing point of an aqueous solution can be calculated using the freezing point depression equation ΔTf = Kf * m. In this case, the solution boils at 101°C, indicating the boiling point elevation constant (Kb) is provided. Assuming complete dissociation, we can calculate the freezing point depression to be -0.512°C.

Explanation:

The freezing point depression can be calculated by using the equation:

ΔTf = Kf * m

Where ΔTf is the change in freezing point, Kf is the cryoscopic constant, and m is the molality of the solution.

In this case, since we have the boiling point elevation constant (Kb), we need to use the equation:

ΔTf = Kb * m

Given that Kb is 0.512 K/m and assuming complete dissociation, a 1.0 m aqueous solution of a solute will contain 1.0 mol of particles per kilogram of water. Therefore, the freezing point depression (ΔTf) will be:

ΔTf = 0.512 K/m * 1.0 m = 0.512 K

Since the freezing point of pure water is 0°C, the freezing point of the aqueous solution will be:

0°C - 0.512 K = -0.512°C

A dog running in an open field has components of velocity vx = 2.6 m/s and vy = -1.8 m/s at t1 = 10.0 s. For the time interval from t1 = 10.0 s to t2 = 20.0 s, the average acceleration of the dog has magnitude 0.45 m/s2 and direction 31.0o measured from the + x-axis toward the + y-axis. At t2 = 20.0 s, (a) what are the x- and y-components of the dog’s velocity? (b) What are the magnitude and direction of the dog’s velocity? (c) Sketch the velocity vectors at t1 and t2. How do these two vectors differ?

Answers

Answer:

a)    vₓ = 6,457 m / s ,  v_{y}  = 0.518 m / s , b)    v = 6.478 m / s,      θ = 4.9°

Explanation:

a) This is a kinematic problem, let's use trigonometry to find the components of acceleration

           sin 31 = [tex]a_{y}[/tex] / a

           cos 31 = aₓ = a

           a_{y} = a sin31

           aₓ = a cos 31

Now let's use the kinematic equation for each axis

X axis

         vₓ = v₀ₓ + aₓ (t-t₀)

         vₓ = v₀ₓ + a cos 31 (t-t₀)

         vₓ = 2.6 + 0.45 cos 31  (20-10)  

         vₓ = 6,457 m / s

Y Axis

       v_{y} = v_{oy} + a_{y} t

       v_{y} = v_{oy} + a_{y}  sin31 (t-to)

       v_{y} = -1.8 + 0.45 sin31   (20-10)

       v_{y}  = 0.518 m / s

b) let's use Pythagoras' theorem to find the magnitude of velocity

       v = √ (vₓ² + v_{y}²)

       v = √ (6,457² + 0.518²)

       v = √ (41.96)

       v = 6.478 m / s

We use trigonometry for direction

       tan θ = v_{y} / vₓ

       θ = tan⁻¹  v_{y} / vₓ

       θ = tan⁻¹ 0.518 / 6.457

       θ = 4.9°

c) let's look for the vector at the initial time

        v₁ = √ (2.6² + 1.8²)

        v₁ = 3.16 m / s

        θ₁ = tan⁻¹ (-1.8 / 2.6)

        θ₁ = -34.7

We see that the two vectors differ in module and direction, and that the acceleration vector is responsible for this change.

          a = (v₂ -v₁) / (t₂-t₁)

As Halley’s comet orbits the sun, its distance from the sun changes dramatically. If the comet’s speed at a distance of 9.8 × 1010 m from the sun is 5.3 × 104 m/s and angular momentum is conserved, what is its speed when it is 3.6 × 1012 m from the sun? Assume the comet can be treated as a point mass. Ignore radial components of momentum

Answers

Answer:

The speed of comet is 1442.77 m/s.

Explanation:

Given that,

Speed of comet's [tex]v_{c}= 5.3\times10^{4}\ m/s[/tex]

Distance from the sun [tex]r_{d}=9.8\times10^{10}\ m[/tex]

Distance [tex]r_{far}=3.6\times10^{12}\ m[/tex]

We need to calculate the speed of comet

Using conservation of angular momentum

[tex]L_{f}=L_{i}[/tex]

[tex]I\omega=I\omega[/tex]

Here. [tex]v = r\omega[/tex]

[tex]\omega=\dfrac{v}{r}[/tex]

[tex]mr_{far}^2\times\dfrac{v_{far}}{r_{far}}=mr_{d}^2\times\dfrac{v_{d}}{r_{d}}[/tex]

[tex]r_{far}\times v_{far}=r_{d}\times v_{d}[/tex]

Put the value into the formula

[tex]3.6\times10^{12}\times v_{far}=9.8\times10^{10}\times5.3\times10^{4}[/tex]

[tex]v_{far}=\dfrac{9.8\times10^{10}\times5.3\times10^{4}}{3.6\times10^{12}}[/tex]

[tex]v_{far}=1442.77\ m/s[/tex]

Hence, The speed of comet is 1442.77 m/s.

Final answer:

The speed of Halley's comet when it is 3.6 x 10^12 m away from the sun can be found using the conservation of angular momentum, resulting in a speed of 1.44 x 10^3 m/s.

Explanation:

To find the speed of Halley's comet at a distance of 3.6 × 1012 m from the sun, we will use the conservation of angular momentum. The orbital momentum of an object around the sun is given by L = mrv, where m is the mass of the comet, r is the radius of the orbit (distance from the sun), and v is the velocity of the comet along that radius.

We are given the comet's speed at a distance of 9.8 × 1010 m is 5.3 × 104 m/s. When the comet is at a distance of 3.6 × 1012 m from the sun, we want to find its new speed, v'. Because angular momentum is conserved, the initial and final angular momentum should be equal:

L initial = L final
m r v = m r' v'

Since the mass of the comet, m, cancels out, we are left with:

r v = r' v'

Plugging in the known values, we get:

9.8 × 1010 m × 5.3 × 104 m/s = 3.6 × 1012 m × v'

Therefore:

v' = (9.8 × 1010 × 5.3 × 104) / (3.6 × 1012)

v' = 1.44 × 103 m/s

The speed of Halley's comet at a distance of 3.6 × 1012 m from the sun is thus 1.44 × 103 m/s.

A 9-hp (shaft) pump is used to raise water to an elevation of 15 m. If the mechanical efficiency of the pump is 82 percent, determine the maximum volume flow rate of water. Take the density of water to be rho = 1000 kg/m3.

Answers

Answer:

The maximum volume flow rate is 0.03745m^3/s

Explanation:

Power input (Pi) = 9-hp = 9×746W = 6,714W

Elevation (h) = 15m

Efficiency (E) = 82% = 0.82

Density (D) of water = 1000kg/m^3

E = Po/Pi

Po (power output) = E×Pi = 0.82×6,714W = 5505.48W

Po = mgh/t

m/t (mass flow rate) = Po/gh = 5505.48/9.8×15 = 37.45kg/s

Volume flow rate = mass flow rate ÷ density = 37.45kg/s ÷ 1000kg/m^3 = 0.03745m^3/s

A star much cooler than the sun would appear (a) red; (b) blue; (c) smaller; (d) larger.

Answers

Final answer:

A star that is cooler than the sun would appear red (a), because the color of a star is associated with its temperature, according to Wien's Law.

Explanation:

The color of a star is closely related to its temperature. In the case of a star that's cooler than the sun, it would appear (a) red. This is due to a principle in astrophysics known as Wien's Law, which states that the peak wavelength (color) of the light emitted by an object (such as a star) shifts to longer, redder wavelengths as the object gets cooler. So, cool stars like red giants appear red, while hotter stars appear blue or white.

Learn more about Star Colors here:

https://brainly.com/question/33442104

#SPJ6

If the plane is flying in a horizontal path at an altitude of 98.0 m above the ground and with a speed of 73.0 m/s, at what horizontal distance from the target should the pilot release the canister? Ignore air resistance.

Answers

Explanation:

The given data is as follows.

     height (h) = 98.0 m,     speed (v) = 73.0 m/s,

Formula of height in vertical direction is as follows.

          h = [tex]\frac{gt^{2}}{2}[/tex],

or,      t = [tex]\sqrt{\frac{2h}{g}}[/tex]

Now, formula for the required distance (d) is as follows.

       d = vt

          = [tex]v \sqrt{\frac{2h}{g}}[/tex]  

        = [tex]73.0 m/s \sqrt{\frac{2 \times 98.0 m}{9.8 m/s^{2}}}[/tex]  

          = 326.5 m

Thus, we can conclude that 326.5 m is the horizontal distance from the target from where should the pilot release the canister.

A firefighting crew uses a water cannon that shoots water at 25.0 m/s at a fixed angle of 53.0° above the horizontal. The fire-fighters want to direct the water at a blaze that is 10.0 m above ground level. How far from the building should they position their cannon? There are two possibilities; can you get them both? (Hint: Start with a sketch showing the trajectory of the water.)

Answers

Final answer:

To find out how far the firefighting crew should position their cannon from the building, we use the equations of projectile motion separately for the vertical and the horizontal components. Since there are two viable times that satisfy the conditions of motion, there are two potential positions of the cannon. This question combines the principles of physics, which are specifically related to projectile motion.

Explanation:

This question is about the physics of projectile motion, specifically under gravity. To find out how far from the building they should position their cannon, we have to deal with the vertical and horizontal components of the projectile motion separately.

First, we determine the time it takes for the water to reach the desired height. We get this by using the equation of motion: H = V*sin(theta)*t - 0.5*g*t^2, where H is the height above the ground level (10m), V is speed (25.0 m/s), sin(theta) is the vertical component of initial velocity, g is acceleration due to gravity (approximated as 10 m/s^2 for ease of calculation), and t is time. We can rearrange this equation to find t.

Next, we use the time obtained and the horizontal component of initial velocity (V*cos(theta)) to find the horizontal distance made by using the equation: s = V*cos(theta)*t.

The hint here is that there are two potential time values, a smaller one and a larger one, leading to two potential distances from the building that the cannon could be positioned. Both times satisfy the conditions of the motion.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ11

The firefighting crew should place their cannon either 8.0 meters or 56.1 meters from the building to reach a blaze 10.0 meters above ground.

To determine how far the firefighting crew should position their cannon, we need to analyze the projectile motion of the water. We'll break this down into x-direction (horizontal) and y-direction (vertical) components.

Step-by-Step Solution

1. Break down initial velocity into components

Initial speed, v₀ = 25.0 m/s

Angle, θ = 53.0°

v₀x = v₀ x cos(θ) = 25.0 x cos(53.0°) ≈ 15.0 m/s

v₀y = v₀ x sin(θ) = 25.0 x sin(53.0°) ≈ 20.0 m/s

2. Write the equations of motion

Vertical (y-direction): y = v₀y x t - 0.5 x g x t²

Given y = 10.0 m, v₀y = 20.0 m/s, g = 9.8 m/s²

Using the quadratic formula, we find the time (t) it takes for the water to reach 10.0 m:

10.0 = 20.0 x t - 0.5 x 9.8 x t²

4.9t² - 20.0t + 10.0 = 0

Solving for t, we get t ≈ 0.54 s or t ≈ 3.74 s

Both times are valid because water can take two paths: one on the way up (0.54 s) and one on the way down (3.74 s).

3. Calculate horizontal distance

Distance (x) = v₀x x t

For t ≈ 0.54 s: x = 15.0 x 0.54 ≈ 8.0 m

For t ≈ 3.74 s: x = 15.0 x 3.74 ≈ 56.1 m

Therefore, the cannon can be placed either 8.0 meters or 56.1 meters from the building.

I am sitting on a train car traveling horizontally at a constant speed of 50 m/s. I throw a ball straight up into the air.
Describe the motion of the ball as I see it. Is the path taken by the ball different than if I was sitting at rest at home and I threw a ball straight up into the air?

Answers

Answer:

Explanation:

I am sitting on a train car traveling horizontally at a constant speed of 50 m/s. I throw a ball straight up into the air. Before , the ball gets separated from my hand , both me the ball will be moving with velocity of 50 m /s in horizontal direction .

As soon as ball is separated from the hand , it acquires addition velocity in upward direction and acceleration in downward direction . This will give relative velocity to the ball with respect to me . So I will see the ball going in upward direction under  gravitational acceleration . It appears as if I am sitting at rest and ball is going in upward direction under deceleration . My motion at 50 m/s will have no effect on the motion of ball in upward direction , according to first law of Newton . It is so because ball too will be moving in forward direction with the same speed which will not be visible to me because I too am moving with the same speed.

If I  am  sitting at rest at home and I threw a ball straight up into the air , I will have the same experience of seeing ball going in similar way as described above.

Four point charges each having charge Q are located at the corners of a square having sides of length a. (a) Find an expression for the total electric potential at the center of the square due to the four charges. (Use any variable or symbol stated above along with the following as necessary: ke.)

Answers

Answer:

[tex]\displaystyle V_t=36\sqrt{2}\times 10^9 \frac{Q}{a}[/tex]

Explanation:

Electric Potential of Point Charges

The electric potential from a point charge Q at a distance r from the charge is

[tex]\displaystyle V=k\frac{Q}{r}[/tex]

Where k is the Coulomb's constant. The total electric potential for a system of point charges is equal to the scalar sum of their individual potentials. The potential is not a vector, so there is no direction or vectors to deal with.

We are required to compute the total electric potential in the center of the square. We need to know the distance from each corner to the center. The diagonal of the square is

[tex]d=\sqrt2 a[/tex]

where a is the length of the side.

The distance from any corner to the center is half that diagonal, thus

[tex]\displaystyle r=\frac{d}{2}=\frac{a}{\sqrt{2}}[/tex]

The total potential in the center is  

[tex]V_t=V_1+V_2+V_3+V_4[/tex]

Please note all the potentials must be calculated including the sign of the charges. Since all the charges are equal to Q, and the distances are the same, the total potential is 4 times the individual potential of each charge.

[tex]V_t=4\times V[/tex]

[tex]\displaystyle V=9\times 10^9 \frac{Q}{\frac{a}{\sqrt{2}}}[/tex]

Operating

[tex]\displaystyle V=9\sqrt{2}\times 10^9 \frac{Q}{a}[/tex]

Thus:

[tex]\displaystyle V_t=4\times 9\sqrt{2}\times 10^9 \frac{Q}{a}[/tex]

[tex]\boxed{\displaystyle V_t=36\sqrt{2}\times 10^9 \frac{Q}{a}}[/tex]

The wavelength of green light is about the size of an atom. (T/F)

Answers

Explanation:

The wavelength of green light is about 500 nanometers, or two thousandths of a millimeter. The typical wavelength of a microwave oven is about 12 centimeters, which is larger than a baseball.

The statement is falls, because the the wavelength of green light is about 500 nm or 500 × 10⁻⁹ m. But the size of an atom is  about 1.2  × 10⁻¹⁰ m. Hence atomic size not equals the wavelength of green light.

What is wavelength?

The wavelength of an electromagnetic wave is the distance between two consecutive crests or troughs.  The upward peak in the wave is called crests and the downward peaks are called troughs.

The wavelength of high energy waves will be shorter. Visible region is in between IR and UV rays in the electromagnetic spectrum. Green light is in the exact middle region of the VIBGYOR. Thus, it is having a wavelength of 500 -520 nm or  500 × 10⁻⁹ m.

The size of an atom is estimated in the range of 1.2  × 10⁻¹⁰ m and it varies from element to element. However the atomic size is not comparable with the wavelength of green light.

To find more on atomic size, refer here:

https://brainly.com/question/1127028

#SPJ5

An iron block with mass mB slides down a frictionless hill of height H. At the base of the hill, it collides with and sticks to a magnet with mass mM.
Now assume that the two masses continue to move at the speed v from Part A until they encounter a rough surface. The coefficient of friction between the masses and the surface is μ. If the blocks come to rest after a distance s, which of the following equations would you use to find s?View Available Hint(s)Now assume that the two masses continue to move at the speed from Part A until they encounter a rough surface. The coefficient of friction between the masses and the surface is . If the blocks come to rest after a distance , which of the following equations would you use to find ?((mB)2mB+mM)gH=μmBgs((mB)2mB+mM)gH=μmMgs((mB)2mB+mM)gH=μ(mB+mM)gs((mB)2mB+mM)gH=−μ(mB+mM)gs((mB)2mB+mM)gH=μ(mB+mM)g

Answers

Final answer:

The correct equation to use to find the distance 's' when the iron block and magnet come to a rest is ((mB)2mB+mM)gH=μ(mB+mM)gs. This equation represents the conversion of potential energy into work done against friction.

Explanation:

((mB)^2 + mM)gH = μ(mB + mM)gs.

This question represents a problem of mechanics in Physics, specifically involving both potential energy and work-energy theorem. The relevant equation to use in finding the distance 's' in this scenario is: ((mB)2mB+mM)gH=μ(mB+mM)gs. This equation derives from setting the initial potential energy of the system equal to the final kinetic energy when it rests, including the energy dissipated due to friction.

Learn more about Mechanics here:

https://brainly.com/question/35147838

#SPJ12

Final answer:

The correct equation to find 's' when an iron block slides down a hill and collides with a magnet before encountering a rough surface, is ((mB)^2 + mB + mM)gH = μ(mB + mM)gs. This equation is derived from equating the kinetic energy at the base of the hill with the work done by friction.

Explanation:

The correct equation to use to define s in this scenario would be: ((mB)2mB+mM)gH=μ(mB+mM)gs. This equation stems from equating the energy at the top of the hill (kinetic + potential energy) with the work done against friction (which eventually stops the two masses). Let's understand it in a detailed step-by-step manner.

Step 1: At the base of the hill, the kinetic energy of the block is equal to the potential energy at the top of the hill, which can be represented as (mB + mM)gH = 0.5(mB + mM)v^2. From this, we can turn the speeds into velocities, which in turn gives us v = sqrt(2gH).

Step 2: When the two masses encounter the rough surface, they will lose their kinetic energy due to friction. The total kinetic energy lost, which is equal to work done by friction, can be represented as 0.5(mB + mM)v^2 = μ(mB + mM)gs. Substituting the value of v from step 1 into this equation gives us the final formula: ((mB)^2 + mB + mM)gH = μ(mB + mM)gs.

Learn more about Physics of Energy and Friction here:

https://brainly.com/question/31847138

#SPJ11

A drunken sailor stumbles 600 meters north, 550 meters northeast, then 500 meters northwest. What is the total displacement and the angle of the displacement?

Answers

We will make a graph to better understand the displacement of the individual. From the trigonometric properties we will find the required distances.

[tex]d_1 = \frac{450}{\sqrt{2}} = 318.198[/tex]

[tex]d_2 = \frac{400}{\sqrt{2}} = 282.843[/tex]

[tex]D = 500+d_1+d_2 = 1101.041[/tex]

Displacement ,

[tex]x = \sqrt{1101.041^2+(318.198-282.843)^2}}[/tex]

[tex]x = 1101.608m[/tex]

The angle would be

[tex]\theta = cos^{-1} (\frac{1101.041}{1101.608})[/tex]

[tex]\theta = E 1.838\° N[/tex]

Therefore the displacement was of 1101.608m to a angle of 1.838° from East to North.

Final answer:

The sailor's total displacement is approximately 1118.16 meters, at an angle of approximately 88.13 degrees north of east.

Explanation:

This is a problem of physics specifically in the field of mechanics, about displacement and vectors. To find the total displacement, the directions in which the sailor traveled need to be considered. A north direction has an angle of 90 degrees, northeast is 45 degrees, and northwest is 135 degrees.

Using the Pythagorean theorem and some trigonometry, we can calculate the displacement in the x and y directions. The total displacement in the x direction (East-West) is 550*cos(45) - 500*cos(45) = 35.35 meters (approximately). The total displacement in the y direction (North-South) is 600 + 550*sin(45) + 500*sin(45) = 1116.57 meters (approximately).

The total displacement would then be the square root of (35.35 ^2 + 1116.57 ^2) = 1118.16 meters (approximately).

To find the angle of the displacement, we can use the arctangent function (atan function in most calculators). The angle is atan (1116.57 / 35.35) = 88.13 degrees (approximately).

Therefore, the sailor's total displacement is approximately 1118.16 meters, at an angle of approximately 88.13 degrees north of east.

Learn more about Displacement and Vectors here:

https://brainly.com/question/36266415

#SPJ3

NASA communicates with the Space Shuttle and International Space Station using Ku-band microwave radio. Suppose NASA transmits a microwave signal to the International; Space Station using radio waves with a frequency of 18.0 GHz. What is the wavelength of these radio waves?

Answers

Answer:

0.0167 m

Explanation:

f = Frequency = 18 GHz

c = Speed of light = [tex]3\times 10^8\ m/s[/tex]

When the speed of the wave is divided by the freqeuncy we get the wavelength

Wavelength is given by

[tex]\lambda=\dfrac{c}{f}\\\Rightarrow \lambda=\dfrac{3\times 10^8}{18\times 10^9}\\\Rightarrow \lambda=0.0167\ m[/tex]

The wavelength of the radio waves is 0.0167 m

t requires1200 kg of coal to produce the energy needed to make 1.0 kg of aluminum metal. If a single soda can requires approximately 15 g of Al, what mass of coal would be needed to produce a 6-pack of cans?

Answers

Answer:

The mass of coal is 108 kg.

Explanation:

Given that,

Energy of coal = 1200 kg

Mass of aluminum = 1.0 kg

Energy required for single soda can = 15 g of Al

Energy required for 6 pack of cans = [tex]6\times15=90\ g\ of\ Al[/tex]

We need to calculate the mass of coal

Using formula of mass

[tex]\text{mass of coal}=\dfrac{\text{Energy of coal}\times\text{Energy required for 6 pack of cans}}{\text{Mass of aluminum}}[/tex]

Put the value into the formula

[tex]m=\dfrac{1200\times90\times10^{-3}}{1.0}[/tex]

Put the value into the formula

[tex]m=108\ Kg[/tex]

Hence, The mass of coal is 108 kg.

According to the Stefan-Boltzmann law, how much energy is radiated into space per unit time by each square meter of the Sun’s surface? If the Sun’s radius is 696,000 km, what is the total power output of the Sun?

Answers

Answer:

[tex]3.8469943828\times 10^{26}\ W[/tex]

Explanation:

[tex]\sigma[/tex] = Stefan-Boltzmann constant = [tex]5.67\times 10^{-8}\ W/m^2K^4[/tex]

T = Surface temperature of the Sun = 5778 K

r = Radius of the Sun = 696000 km

From Stefan-Boltzmann law

[tex]F=\sigma T^4\\\Rightarrow F=5.67\times 10^{-8}\times 5778^4\\\Rightarrow F=63196526.546\ W/m^2K[/tex]

Power is given by

[tex]P=F4\pi r^2\\\Rightarrow P=63196526.546\times 4\pi\times (696000000)^2\\\Rightarrow P=3.8469943828\times 10^{26}\ W[/tex]

The power output of the Sun is [tex]3.8469943828\times 10^{26}\ W[/tex]

The thermal conductivity of a sheet of rigid insulation is reported to be 0.029 W/(m·K). The temperature difference across a 20 mm thick sheet of insulation is 10˚C. (a) What is the heat flux through a 2m x 2m sheet of this insulation? (b) What is the total rate of heat transfer through the sheet?

Answers

Answer:

a)[tex]q=14.5\ W/m^2[/tex]

b)Q= 58 W  

Explanation:

Given that

Thermal conductivity ,K = 0.029 W/m.k

The temperature difference ,ΔT= 10°C

The thickness ,L = 20 mm

We know that

[tex]Q=\dfrac{KA}{L}\times \Delta T[/tex]

Now by putting the values

[tex]Q=\dfrac{0.029\times 4}{0.02}\times 10\ W[/tex]

Q= 58 W

The heat flux through the sheet is given as

[tex]q=\dfrac{Q}{A}\ W/m^2[/tex]

[tex]q=\dfrac{58}{2\times 2}\ W/m^2[/tex]

[tex]q=14.5\ W/m^2[/tex]

a)[tex]q=14.5\ W/m^2[/tex]

b)Q= 58 W

A fence post is 52.0 m from where you are standing, in a direction 37.0° north of east. A second fence post is due south from you. How far are you from the second post if the distance between the two posts is 68.0° m?

Answers

Final answer:

The distance from the starting point is approximately 26.3 m and the compass direction is 25.3° west of north.

Explanation:

To find the distance between the starting point and the final position, we can use the Pythagorean theorem. We can calculate the distances in the north and west directions using the given lengths and angles. Using the given values, the distance from the starting point is approximately 26.3 m. The compass direction of the line connecting the starting point to the final position is 25.3° west of north.

Final answer:

To find the distance between the starting point and final position, use the Pythagorean theorem. The total distance is approximately 31.3 m. To determine the compass direction, use trigonometry. The compass direction is approximately 36.9° north of west.

Explanation:

To find the distance between your starting point and final position, you can use the Pythagorean theorem. First, calculate the horizontal distance by adding the horizontal components of the two legs of the walk: A = 18.0 m west and B = 0 m south. The horizontal distance is 18.0 m. Then, calculate the vertical distance by summing up the vertical components of the two legs of the walk: A = 0 m north and B = 25.0 m north. The vertical distance is 25.0 m. Apply the Pythagorean theorem to find the total distance by taking the square root of the sum of the squares of the horizontal and vertical distances. The total distance is approximately 31.3 m.

To determine the compass direction of a line connecting your starting point to your final position, you can use trigonometry. First, calculate the angle θ between the horizontal distance (18.0 m) and the hypotenuse (31.3 m). You can use the inverse tangent function: θ = arctan(vertical distance/horizontal distance). Calculate θ to be approximately 53.1°. Since you walked west and then north, the compass direction is 90° less than θ. Therefore, the compass direction is approximately 36.9° north of west.

The efficiency of a squeaky pulley system is 73 percent. The pulleys are usedto raise a mass to a certain height. What force is exerted on the machine if arope is pulled 18.0 m in order to raise a 58 kg mass a height of 3.0 m

Answers

The efficiency of the machine is defined as

[tex]\eta = \frac{W_{out}}{W_{in}}[/tex]

Here

Work out is the work output and Work in is the work input

To find the Work in we have then

[tex]W_{in} = \frac{W_{out}}{\eta}[/tex]

[tex]W_{in} = \frac{mgh}{\eta}[/tex]

Replacing with our values

[tex]W_{in} = \frac{(58)(9.8)(3)}{73\%}[/tex]

[tex]W_{in} = 2335.89J[/tex]

The work done by the applied force is

W = Fd

Here,

F = Force

d = Distnace

Rearranging to find F,

[tex]F = \frac{W}{d}[/tex]

[tex]F = \frac{2335.89J }{18}[/tex]

F = 129.77N

Therefore the force exerted on the machine after rounding off to two significant figures is 130N

Final answer:

The force exerted on the pulley system when a rope is pulled 18.0 m in order to raise a 58 kg mass a height of 3.0 m with an efficiency of 73 percent is about 129.42 Newtons.

Explanation:

To solve this problem, we need to understand the concept of machine efficiency and work. The efficiency of a machine is the ratio of output work to input work.

In this case, the efficiency of the pulley system is given as 73%. Meaning output work is 73% of the input work. The force exerted on the machine is equivalent to the input work divided by the distance pulled.

The output work (W_out) can be determined using the formula W_out = mass * gravity * height = 58 kg * 9.8 m/s^2 * 3.0 m = 1701.6 Joules.

Then, we can find the input work (W_in) using the efficiency formula: W_in = W_out / efficiency = 1701.6 J / 0.73 = 2329.59 Joules.

Finally, we can find the force exerted on the pulley system (F_in) by dividing the input work by the distance pulled: F_in = W_in / distance = 2329.59 J / 18.0 m = 129.42 Newtons.

So, the force exerted on the machine would be approximately 129.42 Newtons.

Learn more about Force in Pulley System here:

https://brainly.com/question/32926125

#SPJ3

A bullet is fired from a rifle that is held 1.60 m above the ground in a horizontal position. The initial speed of the bullet is 1058 m/s. Calculate the time it takes for the bullet to strike the ground.

Answers

Answer:

time takes for the bullet to strike the ground is 0.5711 second

Explanation:

given data

height h = 1.60 m

initial speed u = 1058 m/s

solution

we get here time that is express here as

time = [tex]\sqrt{\frac{2h}{g}}[/tex]     ......................1

put here value and we will get here time that is

time = [tex]\sqrt{\frac{2*1.60}{9.81}}[/tex]

time = 0.5711 second

so time takes for the bullet to strike the ground is 0.5711 second

Final answer:

The time it takes for a bullet to strike the ground when fired horizontally from 1.60 m is calculated using the equation t = √(2h/g). Substitute 1.60 m for h and 9.81 m/s² for g to obtain t ≈ 0.571 seconds.

Explanation:

Calculating the Time for a Bullet to Strike the Ground

To calculate the time it takes for a bullet to strike the ground when fired from a horizontal position 1.60 meters above the ground with an initial speed of 1058 m/s, we can use the equations of motion for uniformly accelerated motion (in this case, the acceleration due to gravity). Since the bullet is fired horizontally, there is no initial vertical velocity component, so the vertical motion can be treated as a free-fall problem.

Using the formula for the time of free fall (t) from a height (h):
t = √(2h/g), where g is the acceleration due to gravity (approximately 9.81 m/s²).

Plugging in the given height of 1.60 m and solving for t gives us:
t = √(2 * 1.60 m / 9.81 m/s²) = √(0.3261 s²) ≈ 0.571 seconds.

Therefore, the bullet will take approximately 0.571 seconds to hit the ground.

A student throws a set of keys vertically upward to her sorority sister, who is in a window 4.00 m above. The keys are caught 1.50 s later by the sister's outstretched hand. (a) With what initial velocity were the keys thrown?(b) What was the velocity of the keys just before they were caught?

Answers

Answer:

a)The keys were thrown with an initial velocity of 10.0 m/s.

b)The velocity of the keys just before they were caught is -4.72 m/s (the keys were caught on their way down).

Explanation:

Hi there!

The equations for the height and velocity of the keys are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h =height of the keys after a time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive)

v = velocity of the keys at time t.

a) We know that at t = 1.50 s, h = 4.00 m and let´s consider that the origin of the frame of reference is located at the point where the keys are thrown so that h0 = 0. Then, using the equation of height, we can obtain the initial velocity.

h = h0 + v0 · t + 1/2 · g · t²

4.00 m = v0 · 1.50 s - 1/2 · 9.81 m/s² · (1.50 s)²

4.00 m + 1/2 · 9.81 m/s² · (1.50 s)² = v0 · 1.50 s

v0 = ( 4.00 m + 1/2 · 9.81 m/s² · (1.50 s)²) / 1.50 s

v0 = 10.0 m/s

The keys were thrown with an initial velocity of 10.0 m/s.

b) Now, using the equation of velocity we can calculate the velocity at t = 1.50 s:

v = v0 + g · t

v = 10.0 m/s - 9.81 m/s² · 1.50 s

v = -4.72 m/s

The velocity of the keys just before they were caught is -4.72 m/s (the keys were caught on their way down).


The ozone molecule O3 has a permanent dipole moment of 1.8×10−30 Cm. Although the molecule is very slightly bent-which is why it has a dipole moment-it can be modeled as a uniform rod of length 2.5×10−10 m with the dipole moment perpendicular to the axis of the rod. Suppose an ozone molecule is in a 8000 N/C uniform electric field. In equilibrium, the dipole moment is aligned with the electric field. But if the molecule is rotated by a small angle and released, it will oscillate back and forth in simple harmonic motion.

What is the frequency f of oscillation?

Answers

Answer:

934701926.438 Hz

Explanation:

Mass of molecule

[tex]m=3\times 16\times 1.67\times 10^{-27}\ kg[/tex]

Moment of inertia is given by

[tex]I=\dfrac{1}{12}ml^2\\\Rightarrow I=\dfrac{1}{12}\times 3\times 16\times 1.67\times 10^{-27}\times (2.5\times 10^{-10})^2\\\Rightarrow I=4.175\times 10^{-46}\ kgm^2[/tex]

E = Electric field = 8000 N/C

p = Dipole moment = [tex]1.8\times 10^{-30}\ Cm[/tex]

l = Length of rod = [tex]2.5\times 10^{-10}\ m[/tex]

Frequency of oscillations is given by

[tex]f=\dfrac{1}{2\pi}\sqrt{\dfrac{pE}{I}}\\\Rightarrow f=\dfrac{1}{2\pi}\sqrt{\dfrac{1.8\times 10^{-30}\times 8000}{4.175\times 10^{-46}}}\\\Rightarrow f=934701926.438\ Hz[/tex]

The frequency of oscillations is 934701926.438 Hz

A student decides to measure the muzzle velocity of a pellet shot from his gun. He points the gun horizontally. He places a target on a vertical wall a distance x away from the gun. The pellet hits the target a vertical distance y below the gun.

(a) Show that the position of the pellet when traveling through the air is given by y = Ax^2, where A is a constant.

(b) Express the constant A in terms of the initial velocity v and the free-fall acceleration g.

(c) If x = 3 m and y = 0.21 m, what is the initial speed of the pellet?

Answers

Answer:

a)  y = A x² , b)   A = - ½ g / v₀², c)    v₀ = 15.46 m / s

Explanation:

For this problem of two-dimensional kinematics, we will use that the time to reach the wall is the same

X axis

         x = v₀ₓ t

         t = x / v₀ₓ

Y Axis  

         y = [tex]v_{oy}[/tex] t - ½ g t²

As it shoots horizontally the vertical speed is zero

        y = - ½ g t²

We replace

         y = - ½ g (x / v₀ₓ)²

The initial speed is all horizontal

        v₀ₓ = v₀

         

         y = - ½ g / v₀²    x²

        y = A x²

b) the expression for the constant is

           A = - ½ g / v₀²

c) we look for the initial speed

           v₀² = - ½ g x² / y

   As the object falls below the exit point its height is negative

          v₀ = √ (- ½  9.8   3²/ (-0.21))

          v₀ = 15.46 m / s

A model of a helicopter rotor has four blades, each of length 3.0 m from the central shaft to the blade tip. The model is rotated in a wind tunnel at a rotational speed of 560 rev/min.part A :What is the linear speed of the bladetip?part B :What is the radial acceleration of the bladetip expressed as a multiple of the acceleration of gravity,g?

Answers

Answer with Explanation:

We are given that

r=3 m

Angular frequency=[tex]\omega[/tex]=560rev/min

A.1 revolution=[tex]2\pi[/tex] radian

560 revolutions=[tex]560\times 2\pi[/tex] rad

Angular frequency=[tex]2\times 3.14\times \frac{560}{60}[/tex]rad/s

1 min=60 s

[tex]\pi=3.14[/tex]

Angular frequency=[tex]\omega=58.6rad/s[/tex]

Linear speed=[tex]\omega r[/tex]

Using the formula

Linear speed=[tex]58.6\times 3=175.8m/s[/tex]

Hence, the linear speed of the blade tip=175.8m/s

B.Radial acceleration=[tex]a_{rad}=\frac{v^2}{r}[/tex]

By using the formula

Radial acceleration=[tex]a_{rad}=\frac{(175.8)^2}{3}= 10.301\times 10^3m/s^2[/tex]

Radial acceleration=[tex]\frac{10.301}{9.8}g\times 10^3=1.05\times 10^3 g[/tex]

Where [tex]g=9.8m/s^2[/tex]

Hence, the radial acceleration[tex]=1.05\times 10^3 g[/tex]

Other Questions
What information should be entered in item 16, "Destination Aerodrome," for an IFR flight with an intended stopover of 30 minutes?What information should be entered in item 16, "Destination Aerodrome," for an IFR flight with an intended stopover of 30 minutes? Which lines from "The Love Song of J. Alfred Prufrock" provide an example of stream of consciousness? A. I have seen the moment of my greatness flicker, nd I have seen the eternal Footman hold my coat, and snicker, And in short, I was afraid. B. Streets that follow like a tedious argument Of insidious intent To lead you to an overwhelming question . Oh, do not ask, "What is it?" C. Slipped by the terrace, made a sudden leap, And seeing that it was a soft October night, Curled once about the house, and fell asleep. D. Time for you and time for me, And time yet for a hundred indecisions, And for a hundred visions and revisions, What is the name given to groups who oppose specific placement of land usages using nuisance theories and local zoning laws? a. NIMBYs b. NUTs c. BANANAs d. BAMBIs How do we know that Lizabeth is on the verge of becoming an adult? Refer to several details from the text. Countries outside the United States use financial accounting standards issued by the a. SEC b. IASB c. GAAP d. LLC WILL GIVE BRAINLIEST AND EXTRA POINTSThe power of _______ grew as a result of Frances victory in the Hundred Years War. a. Joan of Arc c. Parliament b. the king d. the Pope When creating documents for larger screens or print, a writer may use the ___________ style to incorporate supporting visuals and summary boxes. A. formal B. converted pyramid C. informal D. linear organization E. conversational Ethan had $8 more than Dakota. Ethan then gave 1/4 of his money to Dakota. The ratio of money Ethan had to the money Dakota had became 5:2. How much money did Ethan five to Dakota? Based upon the information in the lesson match the description with the term from the SPORT acronym that it best discribes Trying to prepare a budget. Chester has done research and found that he spends an average of $120 on his phone/internet/cable service, $277 on his electric bill, and$299 on his health insurance premium. If he earns $2800 per month, estimate the amount of money he will have after paying these bills each month. two numbers that multiply to -14 and add to -5 A user saves a password on a website the user logs into from a desktop. Under which circumstances will the password be saved on other devices?Same browserSame encryption certificateSame Internet providerSame operating system What novel insight did Mencius bring to Confucius thought?A. Human nature is not a factor in determining whether someone is Good B. Different cultures may disagree on the appropriate rituals and rites C. Human nature is essentially and innately good D. One ought to love everyone as if they were a sibling The rectangular prism shown has a surface area of 488 square inches. What is the length of the prism? Archaeal genomes are typically organized as circular genomes. True or false A rectangular block floats in pure water with 0.400 in. above the surface and 1.60 in. below the surface. When placed in an aqueous solution, the block of material floats with 0.800 in. below the surface. Estimate the specific gravities of the block and the solution. Evaluate the equation: x+3=18 The theory of urban development that emphasizes wedge shapes extending from the center to the periphery is called the Select one: a. concentric circle model. b. sector model. c. multiple nuclei model. d. original zone model. A flight academy had a graduation rate of 85.1 for 27-year old candidates from 2000-2009. Since then, new instructors have been hired that have specifically worked on providing clearer instruction to pilot candidates. From 2010-2018, the graduation rate for 27-year old candidates is 88.3. What percentile did the organization start at from 2000-2009, and what percentile is the organization now (2010-2018) Dopamine plays a critical role in operant conditioning. Research has suggested that ____ triggers a dopamine burst that enables the neural changes in learning. Steam Workshop Downloader