Hydrogen bonds typically occur between hydrogen atoms of one molecule and a more electronegative atom from another molecule, they do not occur between two hydrogen atoms. This is the primary misunderstanding regarding the effects of hydrogen bonding between water molecules.
Explanation:Hydrogen bonding is a weak interaction that occurs between a slightly positive hydrogen atom of one molecule, usually a polar covalent molecule like water, and the slight negative charge on another molecule. This commonly occurs between water molecules, when the weakly negative oxygen atom is attracted to the weakly positive hydrogen atoms of other nearby water molecules. However, hydrogen bonds can also form between other molecules.
Given the choices you provided, the incorrect statement about the consequences of hydrogen bonding between water molecules would be: 'Hydrogen bonds occur between two atoms of hydrogen'.
This is incorrect as hydrogen bonds are not usually seen between two hydrogen atoms. Rather, these types of bonds typically involve a hydrogen atom that's already part of a polar molecule (such as water) forming a bond with a more electronegative atom (like oxygen or nitrogen) from another molecule.
Learn more about Hydrogen Bonding here:https://brainly.com/question/30885458
#SPJ3
Be sure to answer all parts. a so-called enhanced water contains citric acid (h3c6h5o7), magnesium lactate [mg(c3h5o3)2], calcium lactate [ca(c3h5o3)2], and potassium phosphate (k3po4). classify each of these compounds as a nonelectrolyte, a weak electrolyte, or a strong electrolyte.
Citric acid is [tex]\boxed{{\text{weak electrolyte}}}[/tex].
Magnesium lactate is [tex]\boxed{{\text{strong electrolyte}}}[/tex].
Calcium lactate is [tex]\boxed{{\text{strong electrolyte}}}[/tex].
Potassium phosphate is [tex]\boxed{{\text{strong electrolyte}}}[/tex].
Further Explanation:
Electrolytes are substances that are able to conduct electricity due to presence of free charged particles or ions in their solutions.
Strong electrolytes are the substances that are completely ionized in solutions. Due to their abilities to release free ions in solutions, these act as good conductors of electricity. Strong acids and bases dissociate completely in solutions so these are good conductors of electricity. Aqueous solution of sodium chloride is an example of strong electrolyte.
Weak electrolytes are the substances that ionize only partially in solutions. Weak acids and bases dissociate partially in solutions so these have conductivity less than that of strong electrolytes but more than that of nonelectrolytes. Aqueous solution of acetic acid acts as weak electrolyte.
Nonelectrolytes are substances that cannot form ions in aqueous solutions. Due to absence of free ions in their solutions, these cannot conduct electricity and act as poor conductors of electricity. Sugar or glucose solution acts as nonelectrolyte.
Citric acid is partially ionized in solutions so it acts as weak electrolyte.
Magnesium lactate is a salt made up of magnesium and lactate ions. Its dissociation occurs as follows:
[tex]{\text{Mg}}{\left( {{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{5}}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}} \rightleftharpoons {\text{M}}{{\text{g}}^{2 + }} + 2{\left( {{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{5}}}{{\text{O}}_{\text{3}}}} \right)^ - }[/tex]
Since magnesium lactate is ionic salt and dissociates completely in solutions, it acts as strongelectrolyte.
Calcium lactate is a salt made up of calcium and lactate ions. Its dissociation occurs as follows:
[tex]{\text{Ca}}{\left( {{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{5}}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}} \rightleftharpoons {\text{C}}{{\text{a}}^{2 + }} + 2{\left( {{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{5}}}{{\text{O}}_{\text{3}}}} \right)^ - }[/tex]
Since calcium lactate is ionic salt and dissociates completely in solutions, it acts as strongelectrolyte.
Potassium phosphate is a salt made up of potassium and phosphate ions. Its dissociation occurs as follows:
[tex]{{\text{K}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}} \rightleftharpoons 3{{\text{K}}^ + } + {\text{PO}}_4^{3 - }[/tex]
Since potassium phosphate is ionic salt and dissociates completely in solutions, it acts as strongelectrolyte.
Learn more:
Identification of ionic bonding: https://brainly.com/question/1603987 What type of bond exists between phosphorus and chlorine? https://brainly.com/question/81715
Answer Details:
Grade: High School
Subject: Chemistry
Chapter: Strong and weak electrolytes
Keywords: calcium lactate, magnesium lactate, citric acid, potassium phosphate, weak electrolyte, strong electrolytes, nonelectrolytes, electrolytes.
Calculate the mass of naoh needed to prepare 100. ml of 0.15m solution.
To prepare 100 mL of a 0.15 M NaOH solution, you will need approximately 0.60 g of NaOH.
Explanation:To calculate the mass of NaOH needed to prepare a 0.15 M solution, we need to use the formula:
Mass (g) = Molarity (M) x Volume (L) x Molar Mass (g/mol)
In this case, the molarity is 0.15 M and the volume is 100 mL (or 0.1 L). The molar mass of NaOH is 22.990 + 15.999 + 1.008 = 39.997 g/mol.
Mass (g) = 0.15 M x 0.1 L x 39.997 g/mol = 0.5999 g, which can be rounded to 0.60 g.
Which statement is true when a crystal is formed from many metal atoms? .A. There are no bands being formed.. B.There are many molecular orbitals.. C.There are only unshared atomic orbitals.. D.There are many electrons lost to other atoms.
Crystal formation form many metals results into combining of many molecular orbitals during formation.
This is because each metallic atomic orbital contributes for the formation of crystal.
When compared with the relative energies of the molecular orbitals it was found that they have lower energy than the atomic orbitals. Thus the new crystals are stable in nature.
How would an inorganic chemist work to address concerns about air pollution?
An inorganic chemist can tackle air pollution via technological innovation like automobile catalytic converters, understanding the chemical behaviors of pollutants, and participate in policy-making to balance environmental and economic concerns.
Explanation:An inorganic chemist could address concerns about air pollution in various ways, primarily through technological and chemical advancements. For instance, they research and develop devices to reduce air pollution, such as automobile catalytic converters. These devices reduce toxic emissions by using a specially selected blend of catalytically active metals, promoting complete combustion of all carbon-containing compounds to carbon dioxide and reducing nitrogen oxides' output. This process involves both adding and removing oxygen at different stages.
Additionally, they can work to understand the chemical behaviors and effects of pollutants. An example would be how sulfur dioxide interacts with calcium carbonate in a polluted environment, causing it to degenerate rapidly. The understanding of such interactions helps in the development of effective abatement strategies.
Finally, inorganic chemists may also contribute to policy-making by determining the environmental social costs of pollution, helping strike a balance between production and environmental quality. They can work on formulating market-oriented strategies for pollution control as a more flexible and economical alternative to government-imposed emission restrictions.
Learn more about Air Pollution here:https://brainly.com/question/37687323
#SPJ2
chemistry omg need help plz I need plz. I real badly at it and try to get better but plz help me
What is represented by the small dots found in each of the bacteria cells
When an electron in an atom spontaneously jumps from a higher energy state to a lower energy state, the atom?
Identify whether longhand notation or noble-gas notation was used in each case below. Potassium (K): 1s22s22p63s23p64s1
Answer: The given electronic configuration is long hand notation.
Explanation:
Long-hand notation of representing electronic configuration is defined as the arrangement of total number of electrons that are present in an element.
Noble-gas notation of representing electronic configuration is defined as the arrangement of valence electrons in the element. The core electrons are represented as the previous noble gas of the element that is considered.
The given electronic configuration of potassium (K): [tex]1s^22s^22p^63s^23p^64s^1[/tex]
The above configuration has all the electrons that are contained in the nucleus of an element. Thus, this configuration is a long-hand notation.
Answer:
longhand notation
Explanation:
in the longhand nota8tion all the electronic configuration of the element is written as it is obtained from the electronic configuration diagram and in the electronic configuration of noble-gas the electronic configuration of the full layer closest to the element is searched, which usually corresponds to the configuration of a noble gas and the full layer configuration corresponding to the noble gas is replaced with the gas symbol
Longhand notation
[tex]K= 1s^2 2s^2 2p^6 3s^23p^64s^1[/tex]
argon electronic configuration
[tex]Ar=1s^2 2s^2 2p^6 3s^23p^6[/tex]
Noble-gas notation
[tex]K=[Ar] 4s^1[/tex]
Why does carbon acculate quicker in boreal peatlands?
which model of an atom was molded after the solar system.
the Bohr's model > <
The element in the top left corner of the periodic table is ______________.answer:
Phosphorus-24 has a half-life of 14.3 days. What percent of phosphorus-24 is left after 144 hours?
Name the two properties of elections that indicate a wave-like nature.
Suppose you find a rock originally made of potassium-40, half of which decays into argon-40 every 1.25 billion years. You open the rock and find 31 atoms of argon-40 for every atom of potassium-40. How long ago did the rock form?
We see that in 1 rock, there are 31 atoms of Argon and 1 atom of Potassium so the relative concentration of Potassium is:
1 / 32
or can be written as:
1 / 2^5
So this means that 5 half-lives have passed.
So the years are:
years passed = 5 * 1.25 billion years = 6.25 billion years
Answer:
1.3 billion years
Explanation:
What element is used in microwave equipment?
Final answer:
Microwave ovens generate microwaves using a magnetron, which accelerates electrons to produce an alternating electric field. This results in dielectric heating of food, as the polar molecules, especially water, absorb the microwave energy and increase their temperature.
Explanation:
The element used in microwave equipment to produce microwaves is not a particular chemical element, but rather a device called a magnetron. The magnetron utilizes the interaction of electrons with a magnetic field to generate microwaves at a frequency of 2.45 GHz.
These microwaves then induce an alternating electric field inside the oven, which causes polar molecules like water to align rapidly back and forth, creating heat through dielectric heating.
This is why substances such as water or food containing water heat up quickly in a microwave: the polar molecules absorb the microwave energy and effectively convert it into thermal energy.
It's helpful to know that the microwaves in a microwave oven are at a frequency that's optimally absorbed by water molecules, which is why food heats up while non-polar items, such as the plate or a ceramic cup, do not get as hot.
The rotational motion of these polar molecules increases, and the energy involved in this rotation is transferred to the surrounding environment in the form of heat, thus warming or cooking the food efficiently.
Water is added to 25.0 ml of a 0.926 m kno3 solution until the volume of the solution is exactly 500 ml. what is the concentration of the final solution?
The concentration of the final solution is 0.0463 M.
When water is added to a solution, the number of moles of solute remains constant, so the concentration of the final solution can be calculated using the formula: C₁V₁ = C₂V₂,
where:
C₁ = initial concentration of the solution
V₁ = initial volume of the solution
C₂= final concentration of the solution
V₂ = final volume of the solution
Given:
C₁ = 0.926 M
V₁ = 25.0 ml = 0.025 L
V₂ = 500 ml = 0.500 L
Substituting these values into the formula:
[tex]\(C2 = \frac{C1 \cdot V1}{V2}\),\\\(C2 = \frac{0.926 \, \text{M} \cdot 0.025 \, \text{L}}{0.500 \, \text{L}}\),\\\(C2 = 0.0463 \, \text{M}\).[/tex]
Therefore, the concentration of the final solution is 0.0463 M.
Learn more about solution concentration, here:
https://brainly.com/question/28313496
#SPJ12
Final answer:
The concentration of the final KNO3 solution after dilution to 500 mL is 0.0463 M, calculated using the dilution formula M1V1 = M2V2.
Explanation:
To find the concentration of the final KNO3 solution, we use the concept of dilution, which follows the formula: M1V1 = M2V2 where M1 is the initial molarity, V1 is the initial volume, M2 is the final molarity, and V2 is the final volume. Given that the initial concentration (M1) of the KNO3 solution is 0.926 M and the initial volume (V1) is 25.0 mL, and the final volume (V2) after dilution is 500 mL, the goal is to find the final concentration (M2).
Applying the values to the formula, we get: (0.926 M)(25.0 mL) = (M2)(500 mL). Solving for M2 gives us M2 = (0.926 M × 25.0 mL) / 500 mL. Therefore, the concentration of the final solution is 0.0463 M.
How many hydrogen atoms are there in 11.4 g water? Please explain
Which of the following pairs of elements would most likely form a salt?
Question 2 options:
Na and Ca
Cl and Fl
Ca and Br
H and He
Answer:
Ca and Br
Explanation:
i took an online test and this was the answer
A salt is formed when a metal combines with a nonmetal hence the pair that will form a salt is Ca and Br.
A salt is an ionic substance. An ionic substance is formed when a metal donates an electron to a nonmetal in an ionic bond. Hence, we must look out for the pair that consists of a metal and a nonmetal.
Closely examining the options, we can see that only the pair involving Ca and Br is comprised of a metal and a nonmetal hence they can form a salt.
Learn more: https://brainly.com/question/11527546
How many moles of al(cn)3 are in 225 g of the compound?
Carbohydrates and proteins are built up from their basic building blocks by the ________.
a. removal of a nitrogen atom between each two units
b. addition of a water molecule between each two units
c. removal of a water molecule between each two units
d. addition of a carbon atom between each two units
Answer:
c. removal of a water molecule between each two units
Explanation:
Carbohydrates and proteins are polymers made up of simple units such as monosaccharides and amino acids respectively. When two amino acids join to form a peptide linkage a molecule of water is released. When two monosaccharides join to form a glycosidic linkage a molecule of water is released. Both these are examples of condensation reaction.
Carbohydrates and proteins are built up from their basic building blocks by the removal of a water molecule between each two units.
Polymerization is defined as the process by which small molecules (monomers) aggregate to form larger molecules called polymers.
Polymerization may occur in two ways;
Addition polymerization in which no small molecule is lostCondensation polymerization in which a small molecule such as water or HCl is lost from each unit.Carbohydrates and proteins are built up from their basic building blocks by the removal of a water molecule between each two units. The building blocks of proteins are amino acids while the building blocks of carbohydrates are monosaccharides.
Learn more: https://brainly.com/question/1443134
What is the average melting point for a solid?
How do you know a chemical reaction has occurred in a candle?
How many moles are in 1.2 x10^3 grams of ammonia, NH3
What volume will a balloon occupy at 1.0 atm, if the balloon has a volume of 4.4 l at 2.2 atm?
The volume of balloon at 1.0 atmis [tex]\boxed{9.68{\text{ L}}}[/tex].
Further Explanation:
A hypothetical gas comprising of a large number of randomly moving particles is called ideal gas. The collisions between such particles are considered to be perfectly elastic. Practically, no gas can be ideal so it is just a theoretical concept.
Given information:
Volume of balloon at 2.2 atm: 4.4 L
To determine:
Volume of balloon at 1.0 atm
Boyle’s law:
This law describes relationship between volume and pressure of gas. According to this law,volume of the gas is inversely proportional to its pressure, provided the temperature and the number of moles of gas remain constant. Mathematical form of Boyle’s law is,
[tex]{\text{P}} \propto \dfrac{1}{{\text{V}}}[/tex]
Or,
[tex]{\text{PV}} = {\text{k}}[/tex]
Where,
V is volume occupied by the gas.
P is the pressure of the gas.
k is a constant.
At two volumes [tex]{{\text{V}}_{\text{1}}}[/tex] and [tex]{{\text{V}}_{\text{2}}}[/tex] andpressures [tex]{{\text{P}}_{\text{1}}}[/tex] and [tex]{{\text{P}}_{\text{2}}}[/tex], equation of Boyle’s law modifies as follows:
[tex]{{\text{P}}_1}{{\text{V}}_1} = {{\text{P}}_2}{{\text{V}}_2}[/tex] …… (1)
Rearrange equation (1) to calculate [tex]{{\text{V}}_{\text{2}}}[/tex].
[tex]{{\text{V}}_2} = \dfrac{{{{\text{P}}_1}{{\text{V}}_1}}}{{{{\text{P}}_2}}}[/tex] …… (2)
Substitute 4.4 L for [tex]{{\text{V}}_{\text{1}}}[/tex] , 2.2 atm for [tex]{{\text{P}}_{\text{1}}}[/tex] and 1.0 atm for [tex]{{\text{P}}_{\text{2}}}[/tex] in equation (2).
[tex]\begin{aligned}{{\text{V}}_2} &= \frac{{\left( {2.2{\text{ atm}}} \right)\left( {4.4{\text{ L}}} \right)}}{{\left( {{\text{1}}{\text{.0 atm}}} \right)}} \\&= 9.68{\text{ L}} \\\end{aligned}[/tex]
Learn more:
Which statement is true for Boyle’s law: https://brainly.com/question/1158880 Calculation of volume of gas: https://brainly.com/question/3636135Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Ideal gas equation
Keywords: Boyle’s law, P, V, k, pressure of gas, volume occupied by gas, constant, temperature, ideal gas, 2.2 atm, 1.0 atm, 4.4 L, 9.68 L.
disproportionation is a process in which a substance
Answer:
is simultaneously oxidized and reduced, giving two different products.
Explanation:
What is the process where a liquid changes from its liquid state to a gaseous state?
Answer:
evaporation
Explanation:
Evaporation is the process where a liquid, in this case water, changes from its liquid state to a gaseous state. Liquid water becomes water vapor. Although lower air pressure helps promote evaporation, temperature is the primary factor.
What subatomic particle is specifically responsible for combining the atoms together to form a new substance?
The electron is the subatomic particle that is specifically responsible for combining atoms together to form a new substance. It does this through chemical bonding, where the outer shell electrons of atoms interact with each other. This process forms the basis of all matter in the universe.
Explanation:In the formation of substances, the subatomic particle that is specifically responsible for combining atoms together is the electron. In chemical bonds, it's the exterior electrons of the atoms that interact and form these bonds. For instance, in the formation of a molecule of water (H₂O), two hydrogen atoms and one oxygen atom bond together, facilitated by the interactions of their electrons.
Atoms are the fundamental building blocks of matter, made up of different subatomic particles, namely electrons, protons, and neutrons. The atom is regarded as the smallest unit of an element that carries the properties of that element. However, it's the electrons in the outer shell of an atom that play an integral role in the formation of different substances via chemical bonding.
These chemical bonds are the basis for all matter in the universe, ranging from the ionic lattice structure of NaCl (common salt) to covalent molecular structures like proteins and sugars found in living organisms. Therefore, comprehending the role of electrons in the atomic construction of matter is key to understanding the vast array of chemical phenomena that occur in our universe.
Learn more about Electron here:https://brainly.com/question/12001116
#SPJ12
For a half-reaction in an acidic solution, which substances should you add to balance the equation?
H+ and H2O
H+ and OH−
H2O and NO2
OH−
How many molecules of hypothetical substance b are produced when 29.9g of hypothetical substance a reacts? the molar mass of substance a is 15.7 g/mol?
1. **Convert the mass of A to moles:**
- [tex]\(29.5 \, \text{g}\)[/tex] of A is approximately [tex]\(1.88 \, \text{mol}\)[/tex].
2. **Convert the number of moles of A to the number of moles of B:**
- [tex]\(1.88 \, \text{mol}\)[/tex] of A corresponds to approximately [tex]\(2.82 \, \text{mol}\)[/tex] of B.
3. **Convert the number of moles of B to the molecules of B:**
- [tex]\(2.82 \, \text{mol}\)[/tex] of B is approximately [tex]\(1.70 \times 10^{24}\)[/tex] molecules.
**Convert the mass of A to moles:**
The first step is to convert the mass of substance A to moles using its molar mass. The formula for moles [tex](\(n\))[/tex] is given by the mass [tex](\(m\))[/tex] divided by the molar mass [tex](\(M\)):[/tex]
[tex]\[ n_A = \frac{m_A}{M_A} \][/tex]
Given that the mass of substance A [tex](\(m_A\))[/tex] is 29.5 g and its molar mass [tex](\(M_A\))[/tex] is 15.7 g/mol:
[tex]\[ n_A = \frac{29.5 \, \text{g}}{15.7 \, \text{g/mol}} \approx 1.88 \, \text{mol} \][/tex]
**Convert the number of moles of A to the number of moles of B:**
The reaction ratio states that 2 moles of A produce 3 moles of B. Therefore, if [tex]\(n_A\)[/tex] is 1.88 mol, the corresponding moles of B [tex](\(n_B\))[/tex] can be calculated using the ratio:
[tex]\[ n_B = \frac{3}{2} \times n_A \][/tex]
[tex]\[ n_B = \frac{3}{2} \times 1.88 \, \text{mol} \approx 2.82 \, \text{mol} \][/tex]
**Convert the number of moles of B to the molecules of B:**
To convert moles of B to molecules [tex](\(N_B\))[/tex], you use Avogadro's number [tex](\(6.022 \times 10^{23}\) mol\(^{-1}\)):[/tex]
[tex]\[ N_B = n_B \times N_A \][/tex]
[tex]\[ N_B = 2.82 \, \text{mol} \times (6.022 \times 10^{23} \, \text{mol}^{-1}) \approx 1.70 \times 10^{24} \, \text{molecules} \][/tex]
The question probable may be:
In a chemical reaction, exactly 2 mol of substance A react to produce exactly 3 mol of substance B.
How many molecules of substance B are produced when 29.5 g of substance A reacts? The molar mass of substance A is 15.7 g/mol.
Convert the mass of A to moles
Convert the number of moles of A to the number of moles of B
Convert the number of moles of B to the molecules of B
Write the equation for the production of one hexose sugar molecule from carbon dioxide
Answer;
6CO2 + 18ATP + 12 NADPH → C6H12O6 + 18ATP + 18Pi + 12NADP+
Explanation;
-The process of Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water.
-The ATP and NADPH molecules produced by the light-dependent reactions of photosynthesis power sugar synthesis in the Calvin cycle. In the Calvin cycle, three molecules of CO2 are added to three molecules of ribulose bisphosphate (RuBP), a 5-carbon sugar already present in the stroma.
-This results to a total of eighteen carbons in the cycle. As the three RuBP molecules accept a molecule of carbon dioxide, they immediately break down into six 3-carbon molecules of phosphoglyceric acid which is a hexose.