Answer:
y + g = 12 ,2y + 3g = 16
y =12-g
Substitute y =12-g in the equation 2y + 3g = 16.
2(12-g)+ 3g = 16
24-2g+3g=16
24+g=16
g=16-24
g= -8
Substitute g= -8 in the equation y =12-g.
y =12-(-8)
=12+8
y =20
Step-by-step explanation:
The value of variable y is 20 and value of variable g is -8.
What is Equation?Two or more expressions with an Equal sign is called as Equation.
The given system of equations are y+ g = 12 and 2y + 3g = 16
y+g=12
y=12-g...(1)
2y+3g=16..(2)
Substitute 1 in equation 2
2(12-g)+3g=16
24-2g+3g=16
Add the like terms
24+g=16
g=16-24
g=-8
Now substitute the g value in equation y+g=12
y-8=12
Add 8 on both sides
y=20
Hence, the value of variable y is 20 and value of variable g is -8.
To learn more on Equation:
https://brainly.com/question/10413253
#SPJ2
Please help me, I really need it.
Answer:
1 False
b. 4.6 and -1.1
Step-by-step explanation:
A negative answer for x is ok
A negative answer inside the square root is not ok. A negative answer inside the square root means the answer is not real. A negative answer just means that x is less than zero.
The quadratic formula is
-b ± sqrt(b^2 -4ac)
----------------------------
2a
2x^2 -10= 7x
Lets get the equation in proper form
2x^2 -7x-10 = 7-7x
2x^2 -7x-10 =0
a=2 b=-7 c=-10
7 ± sqrt((-7)^2 -4(2)(-10))
----------------------------
2(2)
7 ± sqrt((49 +80)
----------------------------
4
7 ± sqrt((129)
----------------------------
4
7 ±11.3579
----------------------------
4
7 +11.3579 7-11.3579
------------------ and -------------
4 4
4.589 and -1.089475
Rounding
4.6 and -1.1
Lucy is going to do her first zip line. The zip line is 20 feet long. The distance from the base of the zip line tower to the finish is 15 feet. How high up the tower does Lucy have to climb before she can zip line down. Round answer to the nearest tenth if necessary
Answer:
13.2'
Step-by-step explanation:
zip line, tower n finish form right-angle triangle w/
zip line as hypothesis=20' n the distance to finish as one side=15'
the tower height^2 + 15^2 = 20^2
the tower height = sqrt (400-225)
=sqrt(175)
=13.2'
Answer:
Lucy has to climb 13.2 feet.
Step-by-step explanation:
By the Pythagoras theorem, with zip line being the hypothesis and the distance from tower base to finish as one side,
20^2 = 15^2 + Height^2
Height^2 = 400 - 225 = 175
Height = 13.22 feet
Lucy has to climb 13.2 feet.
If property damage due to erosion along the coast is $60 million each year, how many money would be spent in 4 years?
Answer:
$240 million
Step-by-step explanation:
In 1 year, $ 60 million would be spent
in 4 years,$ (60 x 4) million or $240 million would be spent
In right △ABC with right angle B, m∠A=(3x−8)° and m∠C=(x−2)°.
What is m∠A?
Question Options:
47°
67°
25°
92
Answer:
<A = 67
Step-by-step explanation:
The three angles of a triangle add up to 180 degrees. We know a right angle is 90 degrees.
<A + <B + <C = 180
3x-8 + 90 + x-2 =180
Combine like terms
4x-10+90 = 180
4x+80 =180
Subtract 80 from each side
4x+80-80=180-80
4x=100
Divide each side by 4
4x/4 = 100/4
x=25
But we want to know <A
<A = 3x-8
Substitute x=25
=3(25) -8
=75-8
= 67
Answer:
67°
Step-by-step explanation:
In a right triangle, the acute angles are complementary. That means that the sum of their measures is 90 deg.
m<A + m<C = 90
3x - 8 + x - 2 = 90
4x - 10 = 90
4x = 100
x = 25
m<A = 3x - 8
m<A = 3(25) - 8
m<A = 75 - 8
m<A = 67
What is the value for y? Enter your answer in the box
Answer:
y = 14
Step-by-step explanation:
[tex]50^\circ+50^\circ+(5y+10)^\circ=180^\circ[/tex]
[tex]100^\circ+(5\times y+10)^\circ=180^\circ[/tex]
[tex](5\times y+10)^\circ=180^\circ - 100^\circ=80^\circ[/tex]
[tex]5 \times y=80^\circ-10^\circ=70^\circ[/tex]
[tex]y=\frac{70^\circ}{5} =14^\circ[/tex]
ahhhh please help! T.T
Answer: 70
=====================================
Explanation:
The exterior angles (2x+12) and (2x) have corresponding interior angles 180-(2x+12) and 180-(2x)
Triangle ABC has the following interior angles
A = 112
B = 180 - 2x
C = 180 - (2x+12) = 180-2x-12 = 168-2x
Add up the interior angles for A,B,C and set the result equal to 180. Solve for x
A+B+C = 180
(112)+(180-2x)+(168-2x) = 180
112+180-2x+168-2x = 180
460-4x = 180
-4x = 180-460
-4x = -280
x = -280/(-4)
x = 70
---------------
Side note:
2x = 2*70 = 140 is the exterior angle for B, so 180-140 = 40 is the interior angle for angle B
2x+12 = 2*70+12 = 152 is the exterior angle for C, so 180 - 152 = 28 is the interior angle for C
Add up the interior angles to find that A+B+C = 112+40+28 = 180, so this helps confirm we have the right x value.
a company a company paid $48 for two cases of printer paper each case contains 12 packages of paper next month the company office manager needs a order of 180 packages of the same paper of the same paper if the price per package does not change what would be the total cost of next month order
Answer:
$360
Step-by-step explanation:
So for 2 cases that have 12 packs its $48 which means each case cost $24, so keep that for later now look closely, they need 180 PACKAGES not cases so if there are 12 packages in one case divide 180/12 and you will get 15, so that means you need 15 cases, so take the $24 per case and multiply that by the 15 cases you need and boom...it will cost the company $360 for next months order :)
Please help me out!!!!!!!
Answer:
the answer is 3/40
Step-by-step explanation:
The sides of a hexagon are 2, 3, 2, 4, 7, and 6. Find the perimeter of a similar hexagon with two sides of length 3.
Answer: P =36
Step-by-step explanation:
4.5 + 6 +3 +3 +10.5+ 9= 36
2,3,2,4,7,6 2/3=3/a a=4.5
3,a,3,b,c,d 2/3=4/b b=6
2/3=7/c c=10.5
2/3=6/d d=9
The perimeter of hexagon is 36 units.
What is hexagon?A closed, two-dimensional polygon with six sides is what is known as a hexagon.
Six vertices and six angles make up a hexagon.
The words "hexa" and "gonio" both refer to six.
Regular hexagons have sides that are all the same length. Therefore, a regular hexagon's circumference is six times as long as its longest side.
Given the sides of Hexagon 2, 3, 2, 4, 7, and 6
the perimeter of hexagon is given by sum of all the sides,
and a similar hexagon with two sides of length 3
the given hexagon have two same sides with length 2 units, so ae can change it by 3 units,
the length of hexagon is 3, a, 3, b, c, and d.
since hexagon are similar so the ratio of their length is also equal,
2/3 = 3/a = 2/3 = 4/b = 7/c = 6/d
solving rati we get a = 4.5, b = 6, c = 10.5 and d = 9
length of new hexagon is 3, 4.5, 3, 6, 10.5, 9
Perimeter = 3 + 4.5 + 3 + 6 + 10.5 +9 = 36 units.
Hence the perimeter is 36 units.
Learn more about hexagon;
https://brainly.com/question/3295271
#SPJ2
At the holiday valley ski resort, skis cost $16 to rent and snowboards cost $19. If 28 people rented on a certain day and the resort brought in $478, how many skis and snowboards were rented?
Answer:
[tex]18[/tex] skis and [tex]10[/tex] snowboards were rented.
Step-by-step explanation:
Let the number of skis rented be [tex]x[/tex] and the number of snowboards rented be [tex]y[/tex].
If a total of [tex]28[/tex] people rented on a certain day, then the total number of skis and snowboards rented that particular day is also [tex]28[/tex].
This gives us the equation
[tex]x+y=28...eqn(1)[/tex].
If skis cost $ [tex]16[/tex], then [tex]x[/tex] number of skis cost $ [tex]16x[/tex].
If snowboards cost $ [tex]19[/tex], then [tex]y[/tex] number of snowboards cost $ [tex]19y[/tex].
The total cost will give us another equation,
[tex]16x+19y=478...eqn(2)[/tex]
From equation (1),
[tex]y=28-x...eqn(3)[/tex].
We put equation (3) into equation (2) to get,
[tex]16x+19(28-x)=478[/tex]
We expand the brackets to obtain,
[tex]16x+532-19x=478[/tex]
We group like terms to get,
[tex]16x-19x=478-532[/tex]
This implies that,
[tex]-3x=-54[/tex]
We divide both sides by [tex]-3[/tex] to get,
[tex]x=18[/tex]
We put [tex]x=18[/tex] into equation (3) to get,
[tex]y=28-18[/tex]
[tex]y=10[/tex]
Therefore [tex]18[/tex] skis and [tex]10[/tex] snowboards were rented.
To solve this problem, you can set up a system of equations where one equation represents the total number of skis and snowboards rented, and the other represents the total cost of those rentals. By solving this system, you can determine the number of skis and snowboards rented.
Explanation:This problem is a classic example of a system of linear equations. Let's denote the number of skis rented as x and the number of snowboards rented as y. From the problem, we know that:
x + y = 28 (The total number of skis and snowboards rented is 28) 16x + 19y = 478 (The total income from skis and snowboard rentals is $478)
By solving these two equations, we can find the values of x and y which represent the number of skis and snowboards rented respectively.
Learn more about System of linear equations here:https://brainly.com/question/20379472
#SPJ3
A recipe calls for 2 1/2 cups of flour to make 6 cupcakes. How much flour is needed to bake 18 cupcakes
Answer:
Since 18 cupcakes are a multiple of 18, simply multiply by 3 times 2 1/2 = 10.5 pounds to bake 18 cupcakes.
Step-by-step explanation:
The selling price of an item is ?$ 440 440. It is marked down by 20?%, but this sale price is still marked up from the cost of ?$ 320 . Find the markup from cost to sale price.
To find the markup from cost to sale price, calculate the original sale price by dividing the selling price by (1 - discount percentage) which is 230
Explanation:To find the markup from cost to sale price, we first need to calculate the cost price.
The item is marked down by 20% from the selling price of $440.
So, the original sale price before the discount would be $440 / (1 - 0.20) = $550.
Since the sale price is still marked up from the cost of $320, we can calculate the markup as:
$550 - $320 = $230.
Learn more about Markup from Cost to Sale Price here:https://brainly.com/question/29965344
#SPJ12
An ice block is melting so that the length of each side is changing at the rate of 1.5 inches per hour. How fast is the surface area of the ice cube changing at the instant the ice block has a side length of 2 inches?
Answer:
d SA /dt = 36 in ^2 / hour
Step-by-step explanation:
Surface area of a cube is 6s^2
We need to take the derivative with respect to t
d SA / dt = ds /dt * 12 s
We know ds /dt is 1.5 inches per hour
s = 2 for the particular instant we are looking at
d SA / dt =1.5 * 12 *2
d SA /dt = 36 in ^2 / hour
Answer:
-36 inches^2 per hour
Step-by-step explanation:
The numbers 4, 5, 6, and 7 are on a spinner. You spin the spinner twice. Which calculation proves that landing on an even number for the first spin and the second spin are independent events?
Answer:
As long as the numbers are in equal proportion on the spinner, the probabilty of landing on an even number for the first and second spin is 1/4, or 25%.
Step-by-step explanation:
If there are four numbers on a spinner, all in equal proportion, than the probability of getting an even number (either 4 or 6) on any spin is 2/4, or 1/2, which is also 50%. Since the results of the first spin do not influence the results of the second spin, then they are independent events. So, if the likelihood of landing on even each time is 1/2, then we would mutliply 1/2 by 1/2 in order to find the probability that landing on an even number would happen in both spins. Our result would be 1/4, or 25%.
Not sure what that dude is even saying. The answer is C- P(A and B)=2/4*2/4
Hope this helped.
Choose the correct word that completes each statement about inscribing a square in a circle.
The second diameter that is constructed or copied is_________ to the first diameter.
parallel
perpendicular
The chord that connects the endpoints of the diameters forms a(n) __________ triangle.
equilateral
scalene
isosceles The side of the inscribed square has a length ________ equal to the radius, r.
sometimes
always
never
Answer:
1. Perpendicular
2. Isosceles
3. Never
Step-by-step explanation:
1. AC ⊥ BD because diameter of a square are perpendicular bisector of each other.
2. In Δ AOB , By using pythagoras : AB² = OA² + OB² .......( 1 )
In Δ COB , By using pythagoras : BC² = OC² + OB² ..........( 2 )
But, OA = OC because both are radius of same circle
So, by using equations ( 1 ) and ( 2 ), We get AB = BC ≠ AC
⇒ ABC is a triangle having two equal sides so ABC is an isosceles triangle.
3. The side can never be equal to radius of circle because the side of the square will be chord for the circle and in a circle chord can never be equal to its radius
Answer:
1. Perpendicular
2. Isosceles
3. Never
Step-by-step explanation:
Daniel's savings account balance is 20 times the amount of Henrys savings account balance. The total amount of money contained in both savings accounts is $ 462. Henry's' account is small, but the bank where he keeps his account actually pays a higher interest rate,4.4%. How much does Daniel have in his savings account?
Answer: Daniel has $22 in his savings account balance.
Step-by-step explanation:
Let Daniel's savings account balance be x
and Henry's savings account balance be y, then as given Daniel's savings account balnce is 20 times that of Henry's, We get [tex]x=20y[/tex]...........(1)
And also total amount of both savings account is $462 so we get [tex]x+y=462[/tex] ......(2)
Now by substituting values of x from (1) into (2) we get,
[tex]20y + y=462\\21y=462\\y=22[/tex]
And [tex]x=$440[/tex]
So, Daniel's savings account balance is $440
and Henry's savings account balance is $22
Answer:
Daniel have $440 in his savings account.
Step-by-step explanation:
Given that Daniel's saving account balance is 20 times the amount of Henry's savings account balance.
So, let Henry's saving account balance = x
Therefore, Daniel's saving account balance = 20 x
Given that total amount of money contained in both account is $ 462
⇒ 20 x + x = 462
21 x =462 ⇒ x = 22
Hence, Daniel's saving account balance = 20 x
= 20 * 22
= $ 440
i will give brainliest to best answer
Answer: B
Step-by-step explanation:
(x - 6) (x¹⁾²) (x + 3)
= (x¹⁾²) (x² - 3x - 18)
= x⁵⁾² - 3x³⁾² - 18x¹⁾²
= √x⁵ - 3√x³ - 18√x
********************************************
Answer: B
Step-by-step explanation:
[tex]\frac{f(x)}{g(x)} =\frac{(x+1)^{-1}}{x-2} = \frac{1}{(x+1)(x-2)}[/tex]
Since denominator cannot equal zero,
x + 1 ≠ 0 and x - 2 ≠ 0
x ≠ -1 and x ≠ 2
Interval Notation: (-∞, -1) U (-1, 2) U (2, ∞)
Which equation represents the total interest, T, earned when the principal amount is 100 $, the annual simple interest rate is 1%, and the number of years is 10
Answer:
The total interest after 10 years is $10.
Step-by-step explanation:
Formula
[tex]Simple\ interest = \frac{Principle\times Rate\times Time}{100}[/tex]
As given
when the principal amount is $100, the annual simple interest rate is 1%, and the number of years is 10.
Principle = $100
Rate = 1%
Time = 10 years
Simple interest = T
Put in the formula
[tex]T = \frac{100\times 1\times 10}{100}[/tex]
[tex]T = \frac{1000}{100}[/tex]
T = $10
Therefore the total interest after 10 years is $10.
Final answer:
The equation for calculating the total interest T on a $100 principal at a 1% annual simple interest rate over 10 years is T = $100 x 0.01 x 10, which equals $10 of interest earned.
Explanation:
The equation representing the total interest, T, earned from a principal amount of $100 with an annual simple interest rate of 1% over 10 years can be calculated using the simple interest formula:
Interest (I) = Principal (P) × Rate (R) × Time (T)
Here, Principal (P) is $100, Rate (R) is 1% or 0.01 (when expressed as a decimal), and Time (T) is 10 years. So our equation will be:
T = $100 × 0.01 × 10
Now, we calculate the total interest:
T = $100 × 0.01 × 10 = $10
Thus, the total interest earned after 10 years will be $10.
Hisaki is making sugar cookies for a bake sale he has 3 1/2 cups of sugar. The recipe calls for 3/4 cup of sugar for one batch of cookies how many total batches of sugar cookies can Hisaki make
Final answer:
Hisaki can make 4 1/3 batches of sugar cookies with the amount of sugar he has.
Explanation:
To find out how many total batches of sugar cookies Hisaki can make, we need to divide the total amount of sugar he has (3 1/2 cups) by the amount of sugar needed for one batch (3/4 cup).
We can convert the mixed number 3 1/2 into an improper fraction: 3 1/2 = 7/2.
Now, we divide 7/2 by 3/4: (7/2) ÷ (3/4) = (7/2) x (4/3) = 28/6 = 4 2/6 = 4 1/3.
Therefore, Hisaki can make a total of 4 1/3 batches of sugar cookies with the amount of sugar he has.
In triangle ABC, m<A=80, m<B=50, AB=4x-4, AC=2x+16, BC=5x+4. Find BC
Answer:
BC - 54 units
Step-by-step explanation:
the sum of the 3 angles in a triangle = 180°
∠C = 180° - (∠A + ∠B) = 180° - (80 + 50)° = 180° - 130° = 50°
Since ∠B = ∠C = 50° then the base angles of the triangle are equal hence the triangle is isosceles with
AB = AC, that is
4x - 4 = 2x + 16 ( subtract 2x from both sides )
2x - 4 = 16 ( add 4 to both sides )
2x = 20 ( divide both sides by 2 )
x = 10
⇒ BC = 5x + 4 = (5 × 10) + 4 = 50 + 4 = 54
A survey of households revealed that 38% have a dog, 47% have a cat, and 15% have both a cat and a dog.
Given that a household owns a dog, what is the probability that it also owns a cat?
P(cat│dog)=
Since P(cat│dog)=39.47% and P(cat)=47%, are the events independent or not independent?
What is the probability of a household owning a cat or a dog?
P(cat or dog)=
Answer:
I) P(cat│dog) = [tex]\frac{0.15}{0.38}[/tex]
II) These events are not independent
III) P(cat or dog)= 0.7
Step-by-step explanation:
Given : Households have dogs = 38%
So, P(dog) = 0.38
Households have cats = 47%
So, P(cats) = 0.47
Households have both dogs and cats = 15%
So, P(both dog and cat ) = [tex]P(cat\cap dog)[/tex] = 0.15
solution :
i) By formula P(A│B) =[tex]\frac{P(A\cap B)}{P(B)}[/tex]
P(cat│dog)= [tex]\frac{P(cat\cap dog)}{P(dog)}[/tex]
P(cat│dog) = [tex]\frac{0.15}{0.38}[/tex]
ii) P(cat│dog)=39.47% = 0.39 and P(cat)=47% = 0.47, are the events not independent
Because condition for independent events in conditional probability is P(A|B)=P(A)
but P(cat│dog) ≠P(cat) i.e. 0.39≠0.47
So, these events are not independent
iii) P(cat or dog) = ?
"or" means union
Formula : [tex]P(A\cup B)= P(A) + P(B)-P(A\cap B)[/tex]
P(cat or dog) = [tex]P(cat\cup dog)= P(cat) + P(dog)-P(cat\cap dog)[/tex]
P(cat or dog)= 0.47 + 0.38 - 0.15
P(cat or dog)= 0.7
Answer:
Step-by-step explanation:
Cats are better (sorry, I just had to say it.)
Find all the zeros of the equation
-3x^4+27^2+1200=0
if you could show yourworkthat would be great :3
Divide both sides by -3, and replace [tex]x^2[/tex] with [tex]y[/tex]. Then
[tex]-3x^4+27x^2+1200=0\iff y^2-9y-400=0[/tex]
Factorize the quadratic in [tex]y[/tex] to get
[tex]y^2-9y-400=(y+16)(y-25)=0\implies y=-16,y=25[/tex]
which in turn means
[tex]x^2=-16,x^2=25[/tex]
But [tex]x^2\ge0[/tex] for all real [tex]x[/tex], so we can ignore the first solution. This leaves us with
[tex]x^2=25\implies x=\pm\sqrt{25}=\pm5[/tex]
If we allow for any complex solution, then we can continue with the solution we ignored:
[tex]x^2=-16\implies x=\pm\sqrt{-16}=\pm i\sqrt{16}=\pm4i[/tex]
An account earns 1.5% interest compounded annually. The balance after 2 years is $8241.80. What is the principal?
PLEASE HELP ME
27
What is the exact solution to the equation
e^3x+5=9 ?
x=3/5+in9
x=3/ln9−5
x=5+ln9/3
x=ln9−5/3
Answer:
[tex]x=\frac{-5+ln9}{3}[/tex] which appears to be from the list x=ln9-5/3
Step-by-step explanation:
We take the natural logarithm of both sides as the inverse operation to an exponent on e. This allows us to use log rules to rearrange the problem.
[tex]e^{3x+5}=9\\lne^{3x+5}=ln9 \\(3x+5)lne=ln9[/tex]
We know that as inverse operations, ln e =1.
[tex](3x+5)(1)=ln9\\3x+5=ln9\\3x=-5+ln9\\\frac{3x}{3}=\frac{-5+ln9}{3}[/tex]
[tex]x=\frac{-5+ln9}{3}[/tex]
Answer:
x = (ln (9)-5) /3
Step-by-step explanation:
e^3x+5=9
First we subtract 5 from each side
e^3x+5-5=9-5
e^3x=(9-5)
Then we take the natural log of each side
ln(e^3x) = ln(9-5)
3x = ln (9-5)
Then we divide by 3 on each side
3x/3 = ln (9-5) /3
x = ln (9-5) /3
Subtract (In picture)
--First we have to simplfy
[tex]\frac{2x-8}{x^2-x-12} -\frac{x-3}{x(x+1)}[/tex]
[tex]\frac{2(x-4)}{(x-4)(x+3)} - \frac{x-3}{x(x+1)}[/tex]
--Cancel common factors
[tex]\frac{2}{(x+3)} -\frac{x-3}{x(x+1)}[/tex]
--Here remember never cancel factors in a subtraction or addition problem
--Now Multiply each side until both denominators are equal to each other
[tex]\frac{2[x(x+1)]}{x(x+3)(x+1)} -\frac{(x-3)(x+3)}{x(x+3)(x+1)}[/tex]
--Simplify
[tex]\frac{2x^2+2x}{x(x+1)(x+3)} - \frac{x^2-9}{x(x+1)(x+3)}[/tex]
--Now that the denominators are the same: subtract!
[tex]\frac{2x^2+2x-(x^2-9)}{x(x+1)(x+3)}[/tex]
[tex]\frac{2x^2-x^2+2x+9}{x(x+1)(x+3)}[/tex]
--And LAST STEP! ......Simplify More.... To get your answer
[tex]\frac{x^2+2x+9}{x(x+1)(x+3)}[/tex]
given : MN is an angle bisector of (angle)JMK
prove : m(angle)JMN=1/2m(angle)JMK
(i need all the reasons)
If the line MN is the angle bisector of ΔJMK, then it creates two angles of equal measure. Hence, m∠JMN is half of m∠JMK due to the property of an angle bisector.
Explanation:In the field of geometry, an angle bisector is a line or ray that divides an angle into two equal angles. This is given by the information provided that MN is an angle bisector of ΔJMK.
By definition, if MN is an angle bisector of ΔJMK, then it creates two angles, ∠JMN and ∠NMK, that are equal in measure. So, we have m∠JMN = m∠NMK. This is the definition of an angle bisector, which is the reason you are looking for.
Given this, if you want to find m∠JMN in terms of ∠JMK, keep in mind that MN bisects ∠JMK, creating the two equal angles we just mentioned. Therefore, m∠JMK = m∠JMN + m∠NMK. Since ∠JMN and ∠NMK are equal, m∠JMK = 2m∠JMN. Hence, m∠JMN = 1/2m∠JMK. This would be a consequence of the angle bisector property.
Learn more about angle bisector here:https://brainly.com/question/37543581
#SPJ12
Identify the value of m in the diagram. HELP ASAP!!
Answer:
3
Step-by-step explanation:
The 'm' value stands for the slope in the context of a linear equation (y = mx + b). In the provided example, it was determined to be 3, i.e., for each unit movement along the x-axis, there will be a three units movement along the y-axis.
Explanation:The
value of m
in your diagram is representative of the slope in a mathematical equation, specifically in the context of a linear equation in the form y = mx + b. Here, 'm' describes how much the line on the graph moves up or down on the y-axis along the line's length. This usually means how much 'y' changes for each one-unit change in 'x'. According to the information provided, assuming that the equation is y = mx + b and b is set to 9, the m value has been determined to be 3. This indicates that for every step you move horizontally (along the x-axis), you would move three steps vertically (along the y-axis). Hence, in this case, the value of 'm' is 3.
Learn more about m value (slope) here:https://brainly.com/question/19059387
#SPJ3
11) Flowers grow rapidly. A flower is 60 inches tall. Tomorrow it will be 71 inches tall. The next day it will be 82 inches tall, and on the next day it will be 93 inches tall. Write a rule to represent the height of the flower as an arithmetic sequence. How tall will the plant be in 12 days?
Answer:
you add 11 inches each day
Step-by-step explanation:
A six-sided number cube labeled from 1 to 6 is rolled. What is the probability of getting a multiple of 2 or a multiple of 3?
Answer:
2/3
Step-by-step explanation:
A six-sided number cube labeled from 1 to 6 is rolled.
Total outcomes = 1,2,3,4,5,6= 6 outcomes
multiple of 2 are 2,4,6 so 3 outcomes
multiple of 3 are 3,6 so 2 outcomes
multiply of 2 or 3 are 2,4,3,6 so 4 outcomes
the probability of getting a multiple of 2 or a multiple of 3
= possible outcomes / total outcomes
= 4/6
now reduce the fraction, divide by 2 on both sides
the probability of getting a multiple of 2 or a multiple of 3 = 2/3
Tthe probability of rolling a multiple of 2 or a multiple of 3 on a six-sided die is [tex]\(\frac{5}{6}\)[/tex].
To find the probability of getting a multiple of 2 or a multiple of 3 when rolling a six-sided number cube, we can list out the possible outcomes and identify which ones satisfy our conditions.
The possible outcomes when rolling six-sided die are: 1, 2, 3, 4, 5, and 6:
Multiples of 2 on the die are: 2, 4, 6.
Multiples of 3 on the die are: 3, 6.
We can see that there is an overlap with the number 6, which is both a multiple of 2 and a multiple of 3. To avoid counting this outcome twice, we use the principle of inclusion-exclusion.
First, we add the number of multiples of 2 to the number of multiples of 3
- There are 3 multiples of 2.
- There are 2 multiples of 3.
So, without considering the overlap, we would have [tex]\(3 + 2 = 5\)[/tex] favorable outcomes.
However, since the number 6 has been counted twice, we subtract one instance of it from our total:
[tex]\(5 - 1 = 4\) unique favorable outcomes (2, 3, 4, 6)[/tex]
Since there are 6 possible outcomes in total when rolling a six-sided die, the probability of rolling a multiple of 2 or a multiple of 3 is the number of favorable outcomes divided by the total number of possible outcomes [tex]\(\frac{4}{6}\)[/tex].
This fraction simplifies to [tex]\(\frac{2}{3}\)[/tex]. However, we have overlooked the fact that every number on a six-sided die is a multiple of 1, and since 1 is neither a multiple of 2 nor of 3, it does not contribute to favorable outcomes. Therefore, the only outcome that is not a multiple of 2 or 3 is number 1.
Thus, the correct probability is [tex]\(1 - \frac{1}{6} = \frac{5}{6}\)[/tex], since there is only 1 unfavorable outcome out of 6 possible outcomes.
I need help please Algebra two
Answer:
Odd
Step-by-step explanation:
The graph intersects the x-axis three times. These three intercepts are the roots of the function and form the factors or solutions for x. They also represent the degree. This is an odd degree because there are 3 roots and 3 is odd. It is at least 3 but could be higher. All odd degree polynomials have the shape of a sideways s.