Name the mineral group for each of the following minerals: Group of answer choices Kyanite (Al2SiO5) Ilmenite (FeTiO3) Rhodochrosite (MnCO3) Celestite (SrSO4) Chalcocite (Cu2S)

Answers

Answer 1

Answer:

Kyanite (Al2SiO5) - silicate

Ilmenite (FeTiO3) - Oxides

Rhodochrosite (MnCO3) - carbonate

Celestite (SrSO4) - sulphate

Chalcocite (Cu2S) -  sulphide

Explanation:

Minerals are classified according to their chemical composition. For example those that hve the CO32- ion are called carbonates and those with the SO42- ion are called sulphates while the ones with S2- ion are called sulphides


Related Questions

How many orbitals in an atom can have each of the following designations: (a) 5f; (b) 4p; (c) 5d; (d) n = 2?

Answers

Answer: (a) seven orbitals, (b). 3 orbitals, (c). 5 orbitals and (d). 4 orbitals.

Explanation:

In order to solve this question we need to know how to explain the behaviour of electrons in atoms,and what we need to know is what is called the quantum numbers. There are four different kinds of quantum numbers and they are;

(1). Principal quantum numbers: the principal quantum number is denoted by the letter 'n'. It is used to describe the orbitals' energy. It has the values of n=1,2,3,4,...

(2). The spin quantum numbers: the spin quantum numbers is denoted by m(s). The 's' in the parenthesis is in subscript. It has the values of +1/2 and -1/2.

(3). Azimuthal quantum numbers: this is denoted by ℓ and it is used to explain orbital angular momentum and orbital shape. It has the values of ℓ= 0,1,2,3,....n-1.

Note that => ℓ = 0; we have a s-subshell,sphere shape.

ℓ = 1; p-subshell, dumb bell shape.

ℓ=2; d- subshell, double dumb bell shape.

ℓ= 3; f - subshell, multiple lobes.

(4). Magnetic quantum number: it is denoted by m(l) where the 'l' in the parenthesis is in subscript.

===> NOTE: there are (2ℓ + 1 ) orbitals in a subshell, also, there are n^2 number of orbitals in a shell.

Having known all that above, let us jump right in to the solution.

(a). From above we can see that; there are (2ℓ + 1 ) orbitals' in a subshell, also, f= ℓ= 3.

Therefore, the number of orbitals in 5f = 2 ℓ + 1 = (2×3) + 1 = 6+1 = 7 orbitals for 5f.

(b). 4p, the numbers of orbitals in 4p is; p= ℓ= 1=> 4 ℓ + 1 = (2×1) + 1 = 2+1 = 3 orbitals for 4p.

(c). 5d, the numbers of orbitals' in 5d is; d= ℓ= 2 = (2×2) + 1 = 4 + 1 = 5 orbitals for 5d.

(d). For n= 2, the numbers of orbital is ; n^2. Where the n given is 2. Therefore, 2^2= 2×2 = 4 orbitals in n=2.

An orbital refers to a region in space where electrons can be found.

An orbital refers to a region in space where there is a high probability of finding an electron. Orbitals that posses the same amount of energy are called degenerate orbitals.

The number of orbitals in an atom that can have the following designations are shown below;

5f - seven orbitals can have this designation because the f orbital is seven fold degenerate.4p - three orbitals can have this designation because the p orbital is three fold degenerate5d - five orbitals can have this designation because the d orbital is five fold degeneraten = 2 - the total number of orbitals in an energy level is given by n^2. Hence there are four orbitals that has the designation n =2

Learn more: https://brainly.com/question/1527403

Question 20 It takes 614./kJmol to break a carbon-carbon double bond. Calculate the maximum wavelength of light for which a carbon-carbon double bond could be broken by absorbing a single photon. Be sure your answer has the c

Answers

Final answer:

The maximum wavelength of light that can break a carbon-carbon double bond by absorbing a single photon is calculated to be 1940 nm. This is done by converting the energy required to break the bond to J/particle, and then using this to find the wavelength using the equation E=h*c/λ.

Explanation:

To find the maximum wavelength of light that can break a carbon-carbon double bond by absorbing a single photon, it is necessary to convert the energy required to break the bond from kJ/mol to energy per photon and then use that to calculate the wavelength. Using the relation between energy and wavelength given by the formula E=h×c/λ, where E is Energy, h is Planck's constant (6.626 x 10⁻³⁴ Js), c is the speed of light and λ is the wavelength.

First, convert the energy required to break the bond to J/particle by converting kJ to J (1kJ = 1000J) and then dividing by Avogadro's number (6.022 x 10²³). Thus, E = 614.4 kJ/mol × 1000 J/kJ / 6.022 x 10²³ particles/mol = 1.02 x 10⁻¹⁹ J/particle.

Then, rearrange the formula to solve for λ. We get λ = h × c/E. Substituting values (h = 6.626 x 10⁻³⁴ Js, c = 3.00 x 10⁸ m/s, and E = 1.02 x 10⁻¹⁹ J) gives λ = 1.94 x 10⁻⁶ meters or 1940 nm.

Learn more about Carbon-Carbon double bond energy here:

https://brainly.com/question/34450034

#SPJ12

Final answer:

The maximum wavelength of light for which a carbon-carbon double bond could be broken by absorbing a single photon is 341 nm.

Explanation:

To calculate the maximum wavelength of light for which a carbon-carbon double bond could be broken by absorbing a single photon, we need to use the formula E = hc/λ, where E is the energy of the photons, h is Planck's constant (6.63 x 10^-34 J·s), c is the speed of light (3.0 x 10^8 m/s), and λ is the wavelength of light in meters.

First, we need to convert the bond energy from kJ/mol to J/molecule by multiplying it by Avogadro's number (6.02 x 10^23). So, the bond energy is 614 x 10^3 J/mol. Next, we can rearrange the formula to solve for λ:

λ = hc/E = (6.63 x 10^-34 J·s)(3.0 x 10^8 m/s)/(614 x 10^3 J/mol)

Calculating this expression gives us a value of λ = 3.41 x 10^-7 m, or 341 nm. Therefore, the maximum wavelength of light for which a carbon-carbon double bond could be broken by absorbing a single photon is 341 nm.

Learn more about Calculating maximum wavelength of light for bond breaking here:

https://brainly.com/question/24177652

#SPJ2

Lithium has two naturally occurring isotopes, 6Li and 7Li . The atomic weight of lithium is 6.941. Which of the following statements concerning the relative abundance of each isotope is correct? A) The abundance of 7Li is greater than 6Li. B) The abundance of 7Li is less than 6Li. C) The abundance of 6Li is equal to the abundance of 7Li. D) Not enough data is provided to determine the correct answer. E) Based on the atomic mass, only 7Li occurs naturally.

Answers

Answer: The abundance of Li-7 isotope is higher as compared to Li-6.

Explanation:

Average atomic mass is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.

Formula used to calculate average atomic mass follows:

[tex]\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i[/tex]

We are given:

Two isotopes of lithium :

Li-6 and Li-7

Average atomic mass of lithium= 6.941

As, the average atomic mass of lithium is closer to the mass of isotope Li-7. This means that the relative abundance of Li-7 is higher as compared to Li-6.

Percentage abundance of Li-7> Percentage abundance of Li-6 isotope

Final answer:

The atomic weight of lithium is closer to the mass number of 7Li, indicating that 7Li is more abundant than 6Li in nature. Thus, the correct answer is A) The abundance of 7Li is greater than 6Li.

Explanation:

The atomic weight of lithium, being 6.941, is closer to 7 than 6. Consequently, this indicates that most naturally occurring lithium is of the heavier 7Li isotope. So, in terms of relative abundance, 7Li is indeed more prevalent than 6Li. This means the correct answer would be option A) The abundance of 7Li is greater than 6Li. Therefore, based on the atomic weight of lithium, we can conclude that the abundance of 7Li is greater than 6Li.

Learn more about Isotopes of Lithium here:

https://brainly.com/question/36271691

#SPJ3

Draw the partial (valence-level) orbital diagram, and write the symbol, group number, and period number of the element:
(a) [Ar] 4s²3d⁵
(b) [Kr] 5s²4d²

Answers

Answer:

a) The element is Manganese (Mn)

b) The element is Zirconium (Zr)

Explanation:

The step by step analysis and explanation is as shown in the attachment

What is the mass of cyclohexane solvent, in kg, if 9.76 mL are used and the cyclohexane has a density of 0.779 g/mL?

Answers

Answer:

0.0076kg

Explanation:

To get the mass, we use the relation among density, mass and volume.

Mass = density * volume

Here mass? , density = 0.779g/ml , volume = 9.76ml

Mass = 9.76 * 0.779 = 7.60g

Answer is wanted in kg so we divide by 1000. This is 7.60/1000 = 0.0076kg

Given that D(H-H) and D(F-F) in H2 and F2 are 436 and 158kJ mol-1, estimate the bond dissociation enthalpy of H-F using a simple additivity rule. Compare the answer with the experimental value of 570kJ mol-1

Answers

Explanation:

Equation of the reaction:

H2(g) + F2(g) --> 2HF(aq)

1/2H2(g) + 1/2F2(g) --> HF(aq)

D(H-H) in H2 = 436 kJ/mol

D(F-F) in F2 = 158kJ/mol

ΔH bond breakage (dissociation):

1/2 mol H-H bonds = (1/2 X 436) kJ

= 218 kJ

1/2 mol F-F bonds = (1/2 X 158) kJ = = 80 kJ

Total = 218 + 80 = 298 kJ

ΔH bond formation:

1 mol H-F bonds = - 570 kJ

= DHreactant - DHproduct

ΔH°f = 298 kJ + -570 kJ = -272 kJ

The orange color of carrots and orange peel is due mostly to β-carotene, an organic compound insoluble in water but soluble in benzene and chloroform. Describe an experiment to determine the concentration of β-carotene in the oil from orange peel.

Answers

Answer:

First Method: Vacuum Distillation and Chromatographic separation of the remains that were precipitated out from the peel.

Second Method: Extraction of components from orange peels by help of precipitation procedures that are mostly done In Situ. Those components can be recovered using the saponification process. Then these are examined under UV light spectroscopy. Now, the existence and extent of carotenoids can be determined by checking the levels of anti-oxidants.

Specify the l and ml values for n = 4.

Answers

Answer : The specify the l and ml values for n = 4 are:

At l = 0,  [tex]m_l=0[/tex]

At l = 1,  [tex]m_l=+1,0,-1[/tex]

At l = 2,  [tex]m_l=+2,+1,0,-1,-2[/tex]

At l = 3,  [tex]m_l=+3,+2,+1,0,-1,-2,-3[/tex]

Explanation:

There are 4 quantum numbers :

Principle Quantum Numbers : It describes the size of the orbital. It is represented by n. n = 1,2,3,4....

Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...

Magnetic Quantum Number : It describes the orientation of the orbitals. It is represented as m_l. The value of this quantum number ranges from [tex](-l\text{ to }+l)[/tex]. When l = 2, the value of [tex]m_l[/tex] will be -2, -1, 0, +1, +2.

Spin Quantum number : It describes the direction of electron spin. This is represented as [tex]m_s[/tex]The value of this is [tex]+\frac{1}{2}[/tex] for upward spin and [tex]-\frac{1}{2}[/tex] for downward spin.

As we are given, n = 4 then the value of l and ml are,

l = 0, 1, 2, 3

At l = 0,  [tex]m_l=0[/tex]

At l = 1,  [tex]m_l=+1,0,-1[/tex]

At l = 2,  [tex]m_l=+2,+1,0,-1,-2[/tex]

At l = 3,  [tex]m_l=+3,+2,+1,0,-1,-2,-3[/tex]

(a) The first step in ozone formation in the upper atmosphere occurs when oxygen molecules absorb UV radiation of wavelengths ≤ 242 nm. Calculate the frequency and energy of the least energetic of these photons. (b) Ozone absorbs light having wavelengths of 2200 to 2900 Å, thus protecting organisms on Earth’s surface from this high-energy UV radiation. What are the frequency and energy of the most energetic of these photons?

Answers

Answer:

a) f = (1.24 × 10^15) Hz and E = (8.214 × 10^-19) J

b) f = (1.36 × 10^15) Hz; E = (9.035 × 10^-19) J

Explanation:

a) The least energetic photons have the highest wavelength. That is, the wavelength of the least energetic photons is equal to the upperlimit of the wavelength inequality given.

λ = 242nm = 2.42 × 10⁻7 m

v = fλ; f = v/λ; v = 3×10^8 m/s

f = (3×10^8)/(2.42×10^-7)

f = (1.24 × 10^15) Hz

E = hf; h = planck's constant = (6.62607004 × 10^-34) Js

E = 6.626 × 10^-34 × 1.24 × 10^15

E = (8.214 × 10^-19) J

b) The photons with the least wavelength in the range provided are the most energetic ones.

λ = (2200 × 10^-10) m = (2.2 × 10^-7) m

v = fλ; f = v/λ; v = 3×10^8 m/s

f = (3×10^8)/(2.2×10^-7)

f = (1.36 × 10^15) Hz

E = hf; h = planck's constant = (6.62607004 × 10^-34) Js

E = 6.626 × 10^-34 × 1.36 × 10^15

E = (9.035 × 10^-19) J

QED!

Final answer:

In ozone formation, least energetic photons having wavelength 242 nm have frequency ≈ 1.24 x 10^15 Hz and energy ≈ 8.2 x 10^-19 J. The most energetic photons that ozone absorbs, with a wavelength of 2200 Å, have a frequency of ≈ 1.36 x 10^15 Hz and energy of ≈ 9.02 x 10^-19 Joules.

Explanation:

(a) The frequency (ν) of a photon is given by the formula: ν = c / λ, where c is the speed of light (3.00 x 10^8 m/s) and λ is wavelength. For the least energetic photons (wavelength of 242 nm), we would convert the wavelength to meters (242 nm = 242 x 10^-9 m). Applying the formula: ν = 3.00 x 10^8 m/s / 242 x 10^-9 m, we get ν ≈ 1.24 x 10^15  Hz.

The energy (E) of a photon is given by the formula: E = hν, where h is Planck’s constant (6.63 x 10^-34 Js). So, E = 6.63 x 10^-34 Js x 1.24 x 10^15 Hz, which gives us E ≈ 8.2 x 10^-19 Joules.

(b) For the most energetic of these photons, they have the shortest wavelength (2200 Å = 2200 x 10^-10 m). Using similar calculations as above: ν ≈ 1.36 x 10^15 Hz and E ≈ 9.02 x 10^-19 Joules.


Learn more about Radiation Energy here:

https://brainly.com/question/25626374

#SPJ3

Beta (β) sheets are a type of secondary structure in proteins. A segment of a single chain in an antiparallel β sheet has a length of 80.5 Å . How many residues are in this segment?

Answers

Answer:

Explanation:

The structural repeating unit  of beta sheet is 7 anstrom/2 aminoacids. So,

  [tex]\frac{80.5 Angstrom}{3.5} = 23 aminoacids[/tex]

If a segment of a single chain  in an antiparallel beta sheet has a length of 80.5 angstrom, then there will be 23 residues in this segment.

Final answer:

To find the number of residues in an 80.5 Å long segment of an antiparallel beta-pleated sheet, divide the total length by the length of one residue (3.5 Å per residue), which gives approximately 23 residues.

Explanation:

The student asked how many residues are in a segment of a single chain in an antiparallel beta-pleated sheet with a length of 80.5 Å. To determine the number of amino acid residues in the segment, we can use the typical amino acid residue length in a ß-pleated sheet, which is approximately 3.5 Å per residue in an extended conformation. This measurement considers the distance hydrogen bonds can span between the carbonyl oxygen and amino hydrogen along the peptide chain in the secondary structure.

By dividing the total length of the chain (80.5 Å) by the length of one residue (3.5 Å), you can calculate the number of residues:

    Number of residues = Total length ÷ Length per residue

    Number of residues = 80.5 Å ÷ 3.5 Å/residue

    Number of residues ≈ 23 residues

This calculation does not account for slight variations that may occur in different proteins or specific contexts, but it provides a general estimate for the number of amino acids in a segment of a beta sheet.

The Tris/Borate/EDTA buffer (TBE) is commonly made as a 5x solution. What volumes of 5x TBE and water are required to make 500 mls of a 0.5x solution which is often used in electrophoresis?

Answers

Answer:

50 ml (5x TBE) + 540 ml (water)

Explanation:

To prepare 0.5x TBE solution from 5x TBE solution we need to use the following dilution formula:

C1 x V1 = C2 x V2,   where:

- C1, V1 = Concentration/amount (start), and Volume (start)

- C2, V2 = Concentration/amount (final), and Volume (final)

* So when we applied this formula it will be:

5 x V1 = 0.5 x 500

V1= 50ml

- To prepare 0.5x we will take 50ml from 5x and completed with 450ml water and the final volume will going to be 500ml.

When the excited electron in a hydrogen atom falls from to , a photon of blue light is emitted. If an excited electron in falls from , which energy level must it fall to so that a similar blue light (as with hydrogen) is emitted? Prove it.

Answers

Answer:

n = 3 for similar blue light

Explanation:

The principle applied here is energy levels and energy changes. There are different energy levels depending on the value of the integer as explained by Max planck - a german physicist in 1900, Max planck claimed that electrons in an atom were presumed to be oscillating with a frequency f, then there enrrgy will be given by the plancks equation ; E =hf, where h is the plancks constant.

In general energy of each level can be written as E =nhf

Suppose you want to test the results of a transformation by growing Escherichia coli cells in LB medium containing ampicillin as the antibiotic for selection. Ampicillin at a concentration of 100 µg/mL will kill cells that do not contain an ampicillin resistance gene, but will allow the growth of cells that have been transformed with this gene. The concentrated stock of ampicillin is 100 mg/mL. How many microliters of the ampicillin stock should you add to 50 mL of LB for a bacterial culture?

Answers

Answer:

50.0 μL

Explanation:

When a dilution is done, the mass of the solute (in this case the ampicillin) remains constant, following the Lavoiser's law that the mass is conserved. The mass is the concentration (C) multiplied by the volume (V), so if 1 is the stock solution, and 2 is the bacterial culture after the addition of the antibiotic:

m1 = m2

C1*V1 = C2*V2

C1 = 100 mg/mL = 100000 μg/mL (1 mg = 1,000μg)

C2 = 100 μg/mL

V2 = 50 mL + V1 = 50000μL + V1 (V1 in μL)

100000*V1 = 100*(50000 + V1)

1000V1 = 50000 + V1

999V1 = 50000

V1 = 50.0 μL

What is the difference in height between the top surface of the glycerin and the top surface of the alcohol? Suppose that the density of glycerin is 1260 kg/m3 and the density of alcohol is 790 kg/m3.

Answers

Here is the full question

Glycerin is poured into an open U-shaped tube until the height in both sides is 20 cm. Ethyl alcohol is then poured into one arm until the height of the alcohol column is 10 cm. The two liquids do not mix.

What is the difference in height between the top surface of the glycerin and the top surface of the alcohol? Suppose that the density of glycerin is 1260 kg/m3and the density of alcohol is 790 kg/m3.

Express your answer in two significant figures and include the appropriate units (in cm)

Answer:

ΔH ≅ 3.73 cm

Explanation:

The pressure inside a liquid is known as hydrostatic pressure and which is represent by the formula:

P =   ρ × g × h

where;

ρ is the density of the fluid

g is the gravitational constant

h is the height from the surface

From the question above;

For glycerine; we have:

density of glycerine = 1260 kg/m³

gravitational constant = 9.8 m/s²

height = ???

[tex]P_{(g)= 1260kg/m^3}*9.8m/s^2*h_g[/tex]   ----- equation (1)

On the other hand for alcohol:

density of alcohol is given as = 790 kg/m³

gravitational constant = 9.8 m/s²

height = 10 cm

[tex]P_{(a)= 790kg/m^3*9.8m/s^2*10[/tex]           ----------- equation (2)

if we equate equation 1 and 2 together; we have

[tex]P_{(g)= P_{(a)[/tex]

[tex]1260kg/m^3}*9.8m/s^2*h_g = 790kg/m^3*9.8m/s^2*10cm[/tex]

Making [tex]h_g[/tex] the subject of the formula, we have :

[tex]h_g= \frac{ 790kg/m^3*9.8m/s^2*10cm}{1260kg/m^3*9.8m/s^2}[/tex]

[tex]h_g[/tex] = 6.269 cm

The difference in the height denoted  by ΔH can therefore be calculated as:

ΔH [tex]= H_a-H_g[/tex]

ΔH [tex]= 10cm - 6.269cm[/tex]

ΔH = 3.731 cm

ΔH ≅ 3.73 cm           (to two significant figures)

How are measurements of paramagnetism used to support electron configurations derived spectroscopically? Use Cu(I) and Cu(II) chlorides as examples.

Answers

Answer:

Paramagnetism is dependent on the unpaired electron in the last orbital . In this regard, Cu(I) chloride is paramagnetic whereas Cu(II) chloride is not.

Explanation:

Paramagnetism is the property of materials/components which makes them attracted them weekly to the magnetic field.

It is related to electronic configuration, such that  it depends on the unpaired electron in the last orbital possess the property.

On basis of this property, Cu(I) chloride is paramagnetic while Cu(II) chloride is non paramagnetic. This is because Cu(I) chloride contains an unpaired electron in the last orbital whereas Cu(II) chloride does not have any unpaired electron.

Answer:

Explanation:

Paramagnetism is a type of magnetism whereby materials are weakly attracted to an externally applied magnetic field and then form internal, induced magnetic fields in the direction of the applied magnetic field. They are attracted to magnetic fields and have magnetic moment induced by the applied field is linear in the field strength. Paramagnetic materials include elements such as Oxygen,

Aluminium etc. and maybe some compounds like FeO etc.

Paramagnetism occurs due to the presence of unpaired electrons in an atom, so atoms with incompletely filled atomic orbitals are paramagnetic, there are exceptions such as copper exist and this is due to their spin, unpaired electrons have a magnetic dipole moment and act like tiny magnets. They have a magnetic permeability slightly greater than 1. External magnetic field causes the electrons spin to align parallel to the field hence, causing a net attraction. Paramagnetic materials include aluminium, oxygen, titanium, and iron oxide (FeO).

From the example,

Cu(I) and Cu(II)

Electronic configuration

Cu(I) - [Ar] 3d10

Cu(II) - [Ar] 3d9

[Ar] - 1s2 2s2 2p6 3s2 3p6 4s2

Therefore, Cu(I) is Paramagnetic while Cu(II) is not Paramagnetic (diamagnetic).

A 5.21 mass % aqueous solution of urea (CO(NH2)2) has a density of 1.15 g/mL. Calculate the molarity of the solution. Give your answer to 2 decimal places.

Answers

Answer:

Molarity is 0.99 M

Explanation:

5.21% by mass, is a sort of concentration which shows the mass of solute in 100 g of solution.

Molarity is a sort of concentration that indicates the moles of solute in 1 L of solution (mol/L)

Let's find out the volume of solution by density.

Solution density = Solution mass / Solution volume

1.15 g/mL = 100 g / Solution volume

Solution volume = 100 g / 1.15 g/mL → 86.9 mL

We must have the volume of solution in L, so let's convert it.

86.9 mL / 1000 = 0.0869 L

Now, we have to determine the moles of solute (urea)

5.21 g . 1 mol / 60 g = 0.0868 moles

Mol/L = Molarity → 0.0868 moles / 0.0869L  = 0.99 M

Answer:

[tex]\large \boxed{\text{1.00 mol/L}}[/tex]

Explanation:

Molar concentration = moles/litres

So, we need both the number of moles and the volume.

1. Volume

Assume a volume of 1 L.

That takes care of that.

2. Moles of urea

(a) Mass of solution

[tex]\text{ Mass of solution} = \text{1000 mL} \times \dfrac{\text{1.15 g solution}}{\text{1 mL}} = \text{1150 g solution}[/tex]

(b) Mass of urea

[tex]\text{Mass of urea} = \text{1150 g solution}\times \dfrac{\text{5.21 g urea}}{\text{100 g solution}} = \text{59.92 g urea}[/tex]

(c) Moles of urea

[tex]\text{Moles of urea} = \text{59.92 g urea} \times \dfrac{\text{1 mol urea}}{\text{60.06 g urea}} = \text{1.00 mol urea}[/tex]

3. Molar concentration

[tex]\text{Molar concentration} = \ \dfrac{\text{1.00 mol}}{\text{1 L}} = \textbf{1.00 mol/L}\\\text{The molar concentration of the urea is $\large \boxed{\textbf{1.00 mol/L}}$}[/tex]

Complete and balance the molecular equation for the reaction of aqueous sodium carbonate, Na 2 CO 3 Na2CO3 , and aqueous nickel(II) chloride, NiCl 2 NiCl2 . Include physical states. molecular equation:

Na 2 CO 3 ( aq ) + NiCl 2 ( aq ) ⟶ 2 NaCl ( aq ) + NiCO 3 ( s ) Na2CO3(aq)+NiCl2(aq)⟶2NaCl(aq)+NiCO3(s) Enter the balanced net ionic equation for this reaction. Include physical states. net ionic equation:

Answers

Answer: The net ionic equation is written below.

Explanation:

Net ionic equation of any reaction does not include any spectator ions.

Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.

The chemical equation for the reaction of sodium carbonate and nickel (II) chloride is given as:

[tex]Na_2CO_3(aq.)+NiCl_2(aq.)\rightarrow 2NaCl(aq.)+NiCO_3(s)[/tex]

Ionic form of the above equation follows:

[tex]2Na^{+}(aq.)+CO_3^{2-}(aq.)+Ni^{2+}(aq.)+2Cl^{-}(aq.)\rightarrow NiCO_3(s)+2Na^+(aq.)+2Cl^-(aq.)[/tex]

As, sodium and chloride ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.

The net ionic equation for the above reaction follows:

[tex]Ni^{2+}(aq.)+CO_3^{2-}(aq.)\rightarrow NiCO_3(s)[/tex]

Hence, the net ionic equation is written above.

Final answer:

The balanced molecular equation for the reaction of Na2CO3 and NiCl2 is Na2CO3(aq) + NiCl2(aq) ⟶ 2NaCl(aq) + NiCO3(s). The balanced net ionic equation, excluding the spectator ions, is CO32-(aq) + Ni2+(aq) ⟶ NiCO3(s).

Explanation:

The reaction between aqueous sodium carbonate (Na2CO3) and aqueous nickel(II) chloride (NiCl2) results in the formation of sodium chloride (NaCl) and nickel carbonate (NiCO3). Represented as molecular equation, it looks like this: Na2CO3(aq) + NiCl2(aq) ⟶ 2NaCl(aq) + NiCO3(s).

For the net ionic reaction, we exclude the spectator ions, which in this case are Na+ and Cl-. These ions remain unreacted in the solution. Therefore, the net ionic equation will be: CO32-(aq) + Ni2+(aq) ⟶ NiCO3(s).

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ3

30 mL of 0.25 M acetic acid are titrated with 0.05 M KOH. What is the pH after addition of 75 mL KOH? Group of answer choices

Answers

Answer:

The PH of the mixture is 4.74

Explanation:

The number of millimoles of acetic acid is calculated using the formula:

No of millimoles= Molarity * Volume( in ml)

= 0.25M * 30ml = 7.5 moles

Number of millimoles of KOH is calculated using:

Number of millimoles = Molarity * Volume ( in ml)

=0.05M * 75ml

= 3.75 moles

The PH of the solution is derived using:

pH = pKa + log [salt] / acid

= [tex] -log [ 1.8 * 10^5 ] + log [ 3.75 mmoles/ 3.75 mmoles] [/tex]

=4.74

Prior to hosting an international soccer match, the local soccer club needs to replace the artifical turf on their field with grass turf. The grass turf will cost $ 9.75 per square meter. If the field is 0.102 km by 0.069 km, how much will it cost the club to add the grass turf to their field?

Answers

It will cost the soccer club $68,618.50 to add the grass turf to their field for the international soccer match.

Given: Length = 0.102 km = 0.102 km  × 1000 m/km = 102 m

Width = 0.069 km = 0.069 km  × 1000 m/km = 69 m

The area of the field: Area = Length × Width

                                    Area = 102 m × 69 m = 7038 sq. meters

The area by the cost of the grass turf per square meter:

Cost = Area × Cost per square meter

Cost = 7038 sq. meters  ×$9.75/sq. meter = $68,618.50

Therefore, it will cost the soccer club $68,618.50 to add the grass turf to their field for the international soccer match.

Learn more about Cost, refer to the link:

https://brainly.com/question/14725550

#SPJ12

A solution is made by dissolving 5.61 g of a new polymer in enough water to make 260 mL of solution. At 25.0 oC, the osmotic pressure of the solution is 0.174 atm. What is the molar mass of the polymer in g/mol?

Answers

Answer:

3030.2 g/mol is the molar mass for our polymer

Explanation:

Formula for Osmotic pressure → π = M . R .T

where π is pressure (atm)

M is molarity mol/L

R, the Universal Gases Constant (0.082 L.atm/mol.K)

T, Absolute T° (T°C + 273)

25°C + 273 = 298 K

Let's replace the values

0.174 atm = M . 0.082l.atm/mol.K . 298K

0.174 atm / (0.082l.atm/mol.K . 298K) = M

7.12×10⁻³ mol/L

As molarity is mol/L, and we have the volume of solution (in mL we must convert to L) we can find out the moles of our polymer that corresponds to the mass we used.

260mL . 1L/1000mL = 0.260L

7.12×10⁻³ mol/L = mol / 0.260L

7.12×10⁻³ mol . 0.260 = mol → 1.85×10⁻³

These moles refers to te 5.61 g of solute, to if we want to determine the molar mass, we should do:

g/mol → 5.61 g / 1.85×10⁻³ mol = 3030.2 g/mol

Final answer:

The molar mass of the polymer is approximately 28.93 g/mol.

Explanation:

To calculate the molar mass of the polymer, we can use the osmotic pressure formula:

π = MRT

Where π is the osmotic pressure, M is the molar mass, R is the ideal gas constant, and T is the temperature in Kelvin.

Given that the osmotic pressure is 0.174 atm and the temperature is 25.0 °C (which needs to be converted to Kelvin), we can rearrange the formula to solve for M:

M = π / (RT)

Now we can plug in the values:

M = 0.174 atm / (0.0821 L·atm/mol·K * 298 K)

M = 0.00706 mol / 0.024438 L

M = 28.93 g/mol

Therefore, the molar mass of the polymer is approximately 28.93 g/mol.

Only certain electron transitions are allowed from one energy level to another. In one-electron species, the change in the quantum number l of an allowed transition must be ±1. For example, a 3p electron can drop directly to a 2s orbital but not to a 2p. Thus, in the UV series, where nfinal = 1, allowed electron transitions can start in a p orbital (l = 1) of n = 2 or higher, not in an s (l = 0) or d (l = 2) orbital of n = 2 or higher. From what orbital do each of the allowed electron transitions start for the first four emission lines in the visible series (nfinal = 2)?

Answers

Final answer:

The first four lines of the Balmer series involve electron transitions from 3p to 2s, 4p to 2s, 5p to 2s, and 6p to 2s orbitals.

Explanation:

The Balmer series involves electron transitions from higher energy levels to the second principal energy level (n=2), producing visible spectral lines. For the first four lines of the visible emission spectrum in the Balmer series, the allowed transitions must follow the selection rule Δl = ±1. Therefore, these transitions can only start from orbitals with l=1, which are the p orbitals.

For nfinal = 2, the corresponding ni initial energy levels for the first four visible emission lines are:

3p (n=3, l=1) to 2s (n=2, l=0)4p (n=4, l=1) to 2s (n=2, l=0)5p (n=5, l=1) to 2s (n=2, l=0)6p (n=6, l=1) to 2s (n=2, l=0)

Write the full electron configuration of the Period 2 element with the following successive IEs (in kJ/mol):
IE₁ = 801
IE₂ = 2427
IE₃ = 3659
IE₄ = 25,022
IE₅ = 32,822

Answers

Answer:

Boron (B) is the element whose IE matches with our data.

Electronic Configuration of boron: [tex]1s^22s^22p^1[/tex]

Explanation:

Ionization Energy (IE):

It is the minimum amount of energy which is required to remove the lose electron. If the electron is closer to the nucleus then greater amount of energy is required to remove the electron.

If we look from left to right in a period, ionization energy increases due stability of valance shell.

From the data given to us:

IE₁ = 801

IE₂ = 2427

IE₃ = 3659

IE₄ = 25,022

IE₅ = 32,822

Boron (B) is the element whose IE matches with our data.

Electronic Configuration of boron: [tex]1s^22s^22p^1[/tex]

Boron has 5 electrons (3 in valance shell) that's why it has 5 Ionization Energies.

CH3CH2OH(l) 3O2(g) Classify each chemical reaction: reaction type of reaction (check all that apply) combination precipitation single replacement combustion double replacement acid-base decomposition combination precipitation single replacement combustion double replacement acid-base decomposition combination precipitation single replacement combustion double replacement acid-base decomposition combination precipitation single replacement combustion double replacement acid-base decomposition

Answers

Answer:

Reaction I is a COMBINATION REACTION - A reaction that involves the mixing of two or more elements to form a single product.

Reaction II is COMBUSTION REACTION - A reaction that involves Oxygen to produce carbon(iv)oxide and water vapor

Reaction III is DOUBLE DISPLACEMENT REACTION - A reaction that involves the exchange of radicals.

Reaction IV is a COMBUSTION REACTION

Explanation:

Reaction I is a COMBINATION REACTION - A reaction that involves the mixing of two or more elements to form a single product.

Reaction II is COMBUSTION REACTION - A reaction that involves Oxygen to produce carbon(iv)oxide and water vapor

Reaction III is DOUBLE DISPLACEMENT REACTION - A reaction that involves the exchange of radicals.

Reaction IV is a COMBUSTION REACTION

Attached is the reactions I - 1V

Final answer:

The given chemical equation CH3CH2OH(l) + 3O2(g) represents a combustion reaction where CH3CH2OH reacts with oxygen to produce carbon dioxide and water.

Explanation:

Based on the given chemical equation, CH3CH2OH(l) + 3O2(g), the reaction is a combustion reaction. Combustion reactions involve the rapid combination of a fuel (in this case, CH3CH2OH) with oxygen (O2) to produce heat, light, and new products. In a combustion reaction, a fuel is oxidized and reacts with oxygen to form carbon dioxide and water.

Learn more about Combustion reaction here:

https://brainly.com/question/12172040

#SPJ6

Today's demand curve for gasoline could shift in response to a change ina.today's price of gasoline. b.the expected future price of gasoline. c.the number of sellers of gasoline. d.All of the above are correct.

Answers

Answer:

d.All of the above are correct.

Explanation:

The curve of demand moves left or right continuously. Income, patterns and preferences, related products prices as well as the population size and composition are the key factors causing demand change.

Final answer:

The demand curve for gasoline can shift in response to changes in price, expected future price, and the number of sellers. Option b is the correct option.

Explanation:

The correct answer is d. All of the above are correct. The demand curve for gasoline reflects the relationship between the price and quantity demanded, so a change in the price of gasoline can shift the curve. The expected future price of gasoline can also influence current demand, as consumers may adjust their purchasing behavior based on their expectations. Additionally, the number of sellers of gasoline can impact market supply, which in turn affects the equilibrium price and quantity.

Learn more about Demand curve for gasoline here:

https://brainly.com/question/33438436

#SPJ11

Suppose a helium-3 nuclide transforms into a helium-4 nuclide by absorbing a proton and emitting a positron. Complete the nuclear chemical equation below so that it describes this nuclear reaction.

Answers

Answer: The nuclear equation for the conversion of He-3 nuclide to He-4 nuclide is given above.

Explanation:

Nuclear reaction are defined as the reactions in which nucleus of an atom is involved.

Positron emission is defined as the emission process in which positron particle is emitted. In this process, a proton gets converted to neutron and an electron neutrino particle.

[tex]_Z^A\textrm{X}\rightarrow _{Z-1}^A\textrm{Y}+_{+1}^0e[/tex]

The chemical equation for the reaction of He-3 with a proton follows:

[tex]_2^3\textrm{He}+_1^1\textrm{H}\rightarrow _2^4\textrm{He}+_{+1}^0e[/tex]

Hence, the nuclear equation for the conversion of He-3 nuclide to He-4 nuclide is given above.

Final answer:

The nuclear equation where a helium-3 nuclide transforms into a helium-4 nuclide by absorbing a proton and emitting a positron is written as ³He + ¹H → ⁴He + e⁺. This ensures that mass and charge are conserved in the reaction.

Explanation:

To complete the nuclear chemical equation where a helium-3 nuclide (³He) transforms into a helium-4 nuclide (⁴He) by absorbing a proton (¹H) and emitting a positron (e⁺), we must ensure that both mass and charge are conserved in the reaction. In this case, the equation can be represented as:



³He + ¹H → ⁴He + e⁺



The mass number on the left side of the equation is 3 (from helium-3) plus 1 (from the proton), totaling 4, which matches the mass number of helium-4 on the right side of the equation. The atomic number (number of protons) is also conserved through this reaction: 2 (from helium-3) + 1 (from the proton) equals 2 (from helium-4) + 1 (from the emitted positron), with positrons having a positive charge but no atomic number associated.

The volume of a single tungsten atom is 1.07×10-23 cm3. What is the volume of a tungsten atom in microliters?

Answers

Answer: 1.07×10^-20microlitre

Explanation:

1cm3 = 1000microlitres

1.07×10^-23 cm3 of tungsten = 1.07×10^-23 x 1000 = 1.07×10^-20microlitre

Final answer:

The volume of a single tungsten atom in microliters is 1.07x10^-17 µL. This is found by multiplying the given volume in cubic centimeters by the conversion factor of 1,000,000 µL/cm³.

Explanation:

The volume of a single tungsten atom is 1.07×10-23 cm3. One cubic centimeter (cm3) is equal to 1,000,000 microliters (µL). To convert the volume from cubic centimeters to microliters, we need to multiply the original value by the conversion factor. Therefore, the volume of a tungsten atom in microliters will be 1.07×10-23 cm3 * 1,000,000 µL/cm3, which equals to 1.07×10-17 µL. Hence, the volume of a tungsten atom in microliters is 1.07×10-17 µL.

Learn more about Conversion of units here:

https://brainly.com/question/33699586

#SPJ3

If 3.52 L of nitrogen gas and 2.75 L of hydrogen gas were allowed to react, how many litres of ammonia gas could form? Assume all gases are at the same temperature and pressure.

Answers

Answer:

V NH3(g) = 1.833 L

Explanation:

balanced reaction:

N2(g) + 3H2(g) → 2NH3(g)

assuming STP:

∴ V N2(g) = 3.52 L

∴ V H2(g) = 2.75 L

ideal gas:

PV = RTn

∴ moles N2(g) = PV/RT

⇒ mol N2(g) = (1 atm)(3.52 L)/(0.082 atm.L/K.mol)(298 K)

⇒ mol N2(g) = 0.144 mol

∴ moles H2(g) = PV/RT

⇒ mol H2(g) = (1)(2.75)/(0.082)(298) = 0.113 mol (limit reagent)

∴ moles NH3(g) = (0.113 moles H2(g))(2 moles NH3 / 3 mol H2) = 0.075 mol

∴ V NH3(g) = RTn/P

⇒ V NH3(g) = ((0.082 atm.L/K.mol)(298 K)(0.075 mol))/(1 atm)

⇒ V NH3(g) = 1.833 L

Final answer:

From 3.52 L of nitrogen and 2.75 L of hydrogen, 1.83 L of ammonia can be produced, considering hydrogen as the limiting reactant based on the stoichiometry of the balanced chemical equation.

Explanation:

The question involves a stoichiometric calculation based on the reaction between hydrogen and nitrogen gases to form ammonia. Given the balanced chemical equation N2(g) + 3H2(g) → 2NH3(g), we can determine how many litres of ammonia gas could form from 3.52 L of nitrogen gas and 2.75 L of hydrogen gas, assuming all gases are at the same temperature and pressure. Since the reaction consumes nitrogen and hydrogen in a 1:3 ratio to produce ammonia in a 2 moles product per 1 mole of nitrogen ratio, we first identify the limiting reactant. Here, hydrogen gas (H2) is the limiting reactant because we need 3 volumes of hydrogen for every volume of nitrogen, but we have less than that (2.75 L instead of 3.52*3 L). The amount of ammonia produced is therefore determined by the amount of hydrogen available. Since 3 volumes of H2 produce 2 volumes of NH3, 2.75 L of H2 would produce (2.75 L * (2/3)) = 1.83 L of NH3.

After doing an experiment, a chemist determines the Rf value of a compound to be 4. He also notes that the solvent travelled 4 cm on the plate. What can you conclude about this experiment

Answers

Answer:

We can conclude that the Rf of that compound has a ratio of 4. It means that the solute has a ratio value of 4 times than that of solvent. As we can see that it has traveled 4 cm , this data is useful in determination of the compound in a mixture when compared with Rf values of other compounds.

A thermos contains 80.0g of water at 23.4 degrees C. Suppose 0.200 moles of KCl are dissolved in the water. What will be the final temperature of the solution? Assume that there is no energy transfer between the solution and the thermos, and that the specific heat is 4.184J/g*degrees C. Also, the delta H of solvation for KCl at 25 degrees C is 17.1 kJ/mol.

Answers

Answer:

32.04°C will be the final temperature of the solution.

Explanation:

Moles of potassium chloride = 0.200 mol

MAs sof KCl= 0.200 mol × 74.5 g/mol= 14.9 g

Enthalpy of solvation of potassium nitrate =

[tex]\Delta H_{solv}=17.1 kJ/mol[/tex]

Energy released when 0.200 moles of KCl is dissolved in water = Q

[tex]Q=17.1kJ/mol\times 0.200 mol=3.42 kJ=3420 J[/tex]

(1 kJ = 1000 J)

Heat released on dissolving 0.200 moles of KCl is equal to heat absorbed by water = Q

Mass of solution , m= 80.0 g +14.9 g = 94.9 g

Specific heat of water = c = 4.184 J/g°C

Initial temperature of the water = [tex]T_1=23.4^oC[/tex]

Final temperature of the water = [tex]T_2=?[/tex]

[tex]Q=m\times c\times (T_2-T_1)[/tex]

[tex]3420 J=94.9g\times 4.184 J/g^oC\times (T_2-23.4^oC)[/tex]

[tex]T_2=32.04^oC[/tex]

32.04°C will be the final temperature of the solution.

How many microliters of original sample are required to produce a final dilution of 10-2 in a total volume of 0.2 mL? 1 microliter is 10-6 L or 10-3 mL.

Answers

Answer:

The required volume of the original sample required is 2 micro liter

Explanation:

assuming the original sample concentration is 1N

after  final dilution of 10-2 solution concentration becomes 0.01 N

normality of original sample  = 1 N

normality  of final solution = 0.01 N

volume of  original sample= ?

volume of   final solution  = 0.2 mL

Considering thef formula below :

N1V1 = N2V2

V1 = (N2V2)/N1

= (0.01*0.2)/1

= 0.002 mL

1 milli liter = 1000 micro liter

0.002 mL = 2 micro liter

The original sample required is 2 micro liter

Final answer:

To produce a final dilution of 10^-2 in a total volume of 0.2mL, 2 microliters of original sample are required.

Explanation:

To find out how many microliters of original sample are needed to generate a final dilution of 10^-2 in a total volume of 0.2 mL, you can use the formula: V1 = V2 × D2 / D1. Here, V1 is the volume of the original sample needed, V2 is the final volume required (which is 0.2 mL), D2 is the final dilution (which is 10^-2), and D1 is the original dilution (which is 1 for undiluted samples).

So, plugging these values into the formula gives: V1 = 0.2 mL × 10^-2 / 1 = 0.002 mL. Convert this volume from milliliters to microliters (1 mL = 1000 μL), so V1 = 0.002 mL * 1000 = 2 μL.

So, 2 microliters of original sample are required to produce a final dilution of 10^-2 in a total volume of 0.2 mL.

Learn more about Dilution here:

https://brainly.com/question/35454012

#SPJ3

Other Questions
Put the items below in correct sequence for using wind to generate electricity. 1 - A generator converts mechanical energy into electrical energy. 2 - Wind turns the wind turbine blade. 3 - A gear box transfers mechanical energy to a generator. 4 - Electricity is transferred to the grid. Consider the following statement: There exist no integers a and b such that 18a + 6b = 1. (a) Rewrite this statement using quantifiers, propositional variables, and predicates. (b) Rewrite the negation of this statement using quantifiers, propositional variables, and predicates. (c) Using contradiction, prove the statement is false. Read the text and write in Spanish.You are a blogger. Write a miniblog about some daily chores you have do today. Write two (2) complete sentences in Spanish to describe what you have to do. Remember to use the vocabulary words from this lesson/course only. Use the following suggestions as a guide for your answer:You may copy and paste the accented and special characters from this list if needed: , , , , , , , , , , , , , , . In one sentence, write at least two household chores you have to do inside the house and on what day/s you have to do them. Remember to use the yo form of the verb tener +que + infinitive. (e.g., On Monday, I have to set the table and make the bed.) In one sentence, write at least two chores you do outside the house and on what day/s you do them. Remember to use the yo form of the verb tener + que + infinitive. (e.g., On Tuesday, I have to take the trash out and cut the grass.) Multinational organizations can shop from country to country and cut costs through: lower wage scales. lower indirect costs. less stringent regulations. lower taxes and tariffs. All of these. Define a set S recursively as follows: I. BASE: (the empty word), a, and b are in S. II. RECURSION: If s S, then a. asa S b. bsb S III. RESTRICTION: No words are in S other than those derived from I and II above.(a) Give a derivation showing that bab is in S.(b) Give a derivation showing that baab is in S.(c) Use structural induction to prove that every string in S is a palindrome. If it makes things easier, you can use the notation s to denote reversing a word (e.g., abb = bba).(d) Argue that abb is not in S A civil-rights group formed to give younger blacks more of a voice in the civil rights movement. The principal channel of student commitment in the United States to the Civil Rights Movement during the 1960s. True or false? Choose true or false for each statement regarding the resistance of a wire.1. The resistivity depends on the temperature of most metal wires.2. While maintaining a constant voltage V, the current I increases when the length L of a wire decreases.3. While maintaining a constant voltage V, the current I increases when the resistivity rho of a wire increases. Solve the equation for y plz -1.2y-4.2y=-3.78 What is 4 equal expressions to 4(2x^2+16) You have a large, healthy philodendron that you carelessly leave in total darkness while you are away on vacation. You are surprised to find that it is still alive when you return. What has the plant been using for an energy source while in the dark? A) While it did have access to light, the plant stored energy in the form of sugars or starch, and it was able to derive energy from the stored molecules during your vacation.B) Even though the plant received no visible light, it was able to use the short-wave part of the electromagnetic spectrum (gamma rays and X-rays) to carry out photosynthesis.C) Even though it can't carry out the light reactions, the plant can still produce sugars because the Calvin cycle doesn't require light.D) When light energy is not available, plants can derive energy from inorganic molecules.E) None of the listed responses The high temperature on Monday was -14 F.on Tuesday the high temperature was 24 F. What is the difference in high temperatures on theses 2 days Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains liters of a dye solution with a concentration of g/liter. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of liters/min, the well-stirred solution flowing out at the same rate.Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value. For questions 9-12, use the following scenario. You are a consultant and have been employed by Urban General, a large inner-city hospital, to estimate the demand for its services. Your research indicates that the income elasticity of demand for the target market is +0.50; the price elasticity of demand is -0.15; and the cross-price elasticity of demand with respect to the price of services at St. Elsewhere, a near-by hospital, is +0.35. Answer the following questions. The price of services at St. Elsewhere falls by 10 percent. What happens to the quantity of services demanded at Urban General? Quantity demanded rises by 35.0 percent. Quantity demanded falls by 3.5 percent. Quantity demanded falls by 1.5 percent. Quantity demanded rises by 5.0 percent. Quantity demanded stays the same. Given the lines, AB and CD, determine the slope of line CD. Type a numerical answer in the space provided. If necessary, use the / key to represent a fraction bar. Do not put spaces in your answer.A(0,-1)B(5,3)C(2,3)D(6,2) Mandi learned that each 10% of charge on her cell phone gave her an hour and twenty minutes of use. While playing a game today on her phone, she noticed the charge drop from 81% to 57% how long did mandi play the game? Which quality of an asset makes it more appropriate for the fair value principle rather than the historical cost principle? At midnight the temperature is -6C. At midday the temperature is 9C. By how much did the temperature rise? A male psychologist is interested in finding out whether there are gender differences in a certain personality characteristic. He administers a paper-and-pencil test of this characteristic to a group of male and female students and then checks statistically to find out whether there are gender differences. Which one of the following biases is likely to be present in that research?A. experimenter effects.B. observer effects.C. biased theoretical model.D. All of the aboveE. None of the above Simple Harmonic MotionAssignment AcireAnalyzing the Motion of a SpringAt which point(s) is the net force the greatest?At which points) is the net force zero?muman What is the measure of side FD?3.4 units 5.9 units 5.8 units 72.4 units Steam Workshop Downloader