Microwaves and infrared waves are similar because they both have ______.
The answer is A. Hope this helps! :)
When a baseball is thrown straight upward, what is its acceleration at its greatest height?
a. 9.8 m/s2 upward b. 9.8 m/s2 downward (my answer?) c. 0 m/s2 d. 9.8 m/s2 horizontally
Answer:
a = 0
Explanation:
When a baseball is thrown straight upward, it moves upward under the action of gravity. We know that at the highest point, the speed of the object is equal to 0. The rate of change of velocity is called acceleration of an object.
Since, the speed is 0 at the height point, so, its acceleration at its greatest height is 0. Hence, this is the required solution.
When a baseball is thrown straight upward, its acceleration at its greatest height is equal to: c. 0 [tex]m/s^2[/tex]
In Physics, the acceleration of an object or body is calculated by subtracting its initial velocity from the final velocity and dividing by the time.
Mathematically, acceleration is given by the formula;
[tex]Acceleration = \frac{V\; - \;U}{t}[/tex]
Where:
V is the final velocity. U is the initial velocity. t is the time measured in seconds.A baseball that is thrown thrown straight upward, experiences motion due to the acceleration of gravity.
Also, the final speed of an object is equal to zero (0) at the greatest height because it came to a stop while the initial velocity is equal to zero (0), since it would accelerate from rest.
Deductively, the rate of change of velocity with respect to time is equal to zero (0) and this is the value of baseball's acceleration.
Read more: https://brainly.com/question/8898885
You move a 75-kg box 35 m. This requires a force of 90 N. How much work is done while moving the box?
Answer: 3150 J
Explanation:
Work is the result when a force acts on an object and moves it by some distance and it is calculated in Joules.
So,
Distance covered by the box = 35m
Force applied on the box = 90N
Formula:
The force and the distance covered was in the same direction, so the angle between them is 0°. The work can be found using the formula:
W = Fd cosθ
W = Fd cos0
W = Fd(1)
W= (90) * (35)
W = 3150 J
Suppose that you want to move a heavy box with mass 30.0 across a carpeted floor. You try pushing hard on one of the edges, but the box does not move. Suppose that you are pushing against the box from an angle 30.0 above horizontal with a force of magnitude 240 . What is the magnitude of the friction force acting on the box? ...?
From Wien's law, at what wavelength does Jupiter's thermal emission peak?
µm In what part of the electromagnetic spectrum does this wavelength lie?
An atom that has 84 protons and 86 neutrons undergoes a reaction. At the end of the reaction, it has 82 protons and 84 neutrons. What happened to the atom?
The atom underwent alpha decay, emitting 2 protons and 2 neutrons, transforming from polonium (Po-170) to lead (Pb-166).
The atom originally was a polonium (Po) atom with 84 protons and 86 neutrons (Po-170). It underwent alpha decay, a type of radioactive decay where it emitted an alpha particle, consisting of 2 protons and 2 neutrons. As a result, the atom transformed into a lead (Pb) atom with 82 protons and 84 neutrons (Pb-166).
This process reduced the atomic number by 2 and the mass number by 4, leading to the formation of a different element. Alpha decay occurs when an unstable nucleus emits an alpha particle, reducing both its atomic number and mass number. It is a natural process observed in certain heavy and unstable elements as they strive to achieve a more stable configuration, often resulting in the formation of a different element.
To know more about atom
https://brainly.com/question/621740
#SPJ12
Accepting the null hypothesis when the experimental hypothesis is true is called a(n) _________ error
Accepting the null hypothesis when the experimental hypothesis is true is called type error.
What is type error ?The type error object denotes a failure to perform an operation.When a value is not of the anticipated type.
When an operand or argument provided to a function is incompatible with the type required by that operator or function,the condition of type error is found.
Accepting the null hypothesis when the experimental hypothesis is true is called type error.
Hence,type error is the correct answer for the blank.
To learn more about the type error, refer to the link;
https://brainly.com/question/24320889
#SPJ2
The density of liquid oxygen at its boiling point is 1.14 \rm{kg/L} , and its heat of vaporization is 213 \rm{kJ/kg} .
How much energy in joules would be absorbed by 3.0 L of liquid oxygen as it vaporized?
To vaporize 3.0 L of liquid oxygen with a density of 1.14 kg/L and a heat of vaporization of 213 kJ/kg, 728460 joules of energy would be absorbed.
The student is asking about the amount of energy required to vaporize a certain volume of liquid oxygen. Given that the density of liquid oxygen at its boiling point is 1.14 kg/L, and its heat of vaporization is 213 kJ/kg, we can calculate the energy needed for vaporization using these two properties.
First, calculate the mass of 3.0 L of liquid oxygen:
Mass = Density times Volume = 1.14 kg/L times 3.0 L = 3.42 kg
Then, calculate the energy required for vaporization:
Energy = Mass times Heat of Vaporization = 3.42 kg times 213 kJ/kg = 728.46 kJ
Since 1 kJ = 1000 J, we can convert the energy to joules:
Energy in joules = 728.46 kJ times 1000 J/kJ = 728460 J
Therefore, 728460 joules of energy would be absorbed by 3.0 L of liquid oxygen as it vaporizes.
anyone know any of these please???
Physics Help Please:
Two astronauts on opposite ends of a spaceship are comparing lunches. One has an apple, the other has an orange. They decide to trade. Astronaut 1 tosses the 0.130kg apple toward astronaut 2 with a speed of vi,1 = 1.07m/s . The 0.160kg orange is tossed from astronaut 2 to astronaut 1 with a speed of 1.19m/s . Unfortunately, the fruits collide, sending the orange off with a speed of 0.998m/s in the negative y direction.
What are the final speed and direction of the apple in this case?
I already found the speed (1.29m/s) but I cannot find the direction.
Picture is in the reply box.
Thank You
The problem involves applying conservation of momentum principles to a two-dimensional collision between an apple and an orange tossed by astronauts. The final direction of the apple after the collision can be determined using the velocity components and trigonometry, specifically the arctan function. To provide the direction, additional details like initial direction are needed.
Explanation:The student is seeking help with a physics problem involving the concepts of momentum conservation and two-dimensional collisions. In this problem, two astronauts (in a hypothetical scenario) are tossing an apple and an orange to each other when the fruits collide in space. The provided information lets us analyze the collision using the principles of momentum to find the final direction of the apple after the collision.
To solve for the direction of the apple after the collision, we must apply the law of conservation of momentum in two dimensions because the collision sends the objects off in different directions. Since there are no external forces, the total momentum in each direction (x and y) should remain constant. We use the before-collision and after-collision momenta to form equations and solve for the final velocity components of the apple, allowing us to calculate the final direction using trigonometry.
However, to provide the exact direction, a diagram or more information indicating the initial directions of the fruits would be required. Assuming the initial throw was along the x-axis and the final velocity of the orange is given in the y-axis, you can apply the arctan function to the velocity components of the apple to find the direction in terms of angle from the x-axis.
materiel in which the relative location of the atom is fixed are
How do you best determine whether j/m2 and m*s2/N are equivalent units?
Compare the written form of the units to see if they look the same.
Notice that one unit contains joules and other newtons.
Determine if the formula that each unit came from are the same.
Express them both in terms of SI base units.
The units can be best determined by expressing them both in terms of SI base units.
What is SI Unit?The Système International (SI) unit is named after the French word for it. The International System of Units (ISO) is the name of the metric system that is used as the industrial standard for measurements (SI). SI units are crucial for the growth of science and technology.
It is composed of 7 base units, from which 22 derivative units are generated. Either a standard multiple or a fractional quantity can be used to express SI units. Prefix multipliers with powers of 10 in the range from [tex]10^{-24}[/tex] To [tex]10^{24}[/tex] Are used to define these numbers.
Now, according to the question :
J=kg×m²/s²
J/m²=kg/s²
and, N=kg×m/s²
⇒m×s²/(kg×m/s²)
=[tex]s^{4}[/tex]/kg
Hence, after comparing both of them, we can say that they are not equivalent.
To get more information about SI unit :
https://brainly.com/question/12750330
#SPJ2
The density (mass/volume) of aluminum is 2.70 mc016-1.jpg 103 kilograms per cubic meter (kg/m3). What is the mass of an aluminum cylinder that has a volume of 1.50 m3?
The mass of the aluminum cylinder is 4,050 kg, obtained by multiplying the given density of aluminum with the given volume of the cylinder.
Explanation:The mass (m) of the aluminum cylinder can be calculated using the formula for density (ρ), which is Density = Mass/Volume. In this case, since the density of the aluminum (ϱ) is 2.70 * 103 kilograms per cubic meter (kg/m3) and the volume (V) of the cylinder is 1.50 m3, we can rearrange the formula to find mass such that Mass = Density * Volume. Substituting the given values, we get m = 2.70 * 103 kg/m3 * 1.50 m3 = 4,050 kg. Therefore, the mass of the aluminum cylinder is 4,050 kg.
#SPJ6
which flow chart below shows the energy conversions that occur when you turn on your laptop
A: electrical> light,sound and thermal
B: thermal> light,sound and electrical
C: electrical> light,sound and nuclear
D: thermal> sound,nuclear and electrical
Answer: Option A.
Explanation: When you turn on your laptop, you are allowing the electrical energy to flow in the components of the laptop.
Once it is on, you can see that your laptop is generating light (from the screen) and sound (maybe if you are listening to music or something). And as the electricity is passing through the components of the laptop, the components start to raise their temperature, and then you also are generating thermal energy.
Which of the following does not contribute to eutrophication ?
A. Sediment
B. Decaying organisms
C. Fertilizer
D. Pollution
The correct answer is A. Sediment
Answer: A. Sediment
Eutrophication is a phenomena in which a water body gets enriched with minerals and nutrients frequently entered into water body due to run-off from the land, which facilitates dense growth of plants especially on the superficial layers of water body. Decaying organisms, fertilizers and pollution all add nutrients and minerals necessary for plant growth specifically remain floating on the superficial layers of water where plant growth takes place but sediments gets settled at the bottom of the water body, the minerals present in it remain settle at the bottom and hence, does not contribute to eutrophication.
In a scene in an action movie, a stuntman jumps from the top of one
building to the top of another building 4.0 m away. After a running start,
he leaps at a velocity of 5.0 m/s at an angle of 15° with respect to the flat
roof. Will he make it to the other roof, which is 2.5 m lower than the
building he jumps from? ...?
Yes, the stuntman can jump from one building to the other building.
Further explanation:
The stuntman jump from one building inclined at some angle to the other traversing a parabolic path.
Given:
The velocity of stuntman is 5m/s.
The distance between the buildings is 4m.
The difference in the height of the buildings is 2.5m.
The angle of inclination is [tex]{15^ \circ }[/tex].
Concept used:
When stuntman jumps from the top of one building to the top of other building he start running first then he jump at a velocity of 5m/s inclined at an angle of [tex]{15^ \circ }[/tex] from the horizontal of first building.
The velocity of stuntman has two components [tex]{v_x}[/tex] and [tex]{v_y}[/tex], respectively in the X-direction and in the Y-direction.
The expression for the distance in horizontal direction is given as.
[tex]x = \left( {v\cos \theta } \right)t[/tex]
Rearrange the above expression for time.
[tex]t = \dfrac{x}{{\left( {v\cos \theta } \right)}}[/tex] …… (1)
Here, t is the time of flight, v is the velocity of object and [tex]\theta[/tex] is the angle of inclination.
The expression for the distance in Y-direction is given by the second equation of motion.
[tex]y = ut + \frac{1}{2}\left( { - g} \right){t^2}[/tex]
Here, u is the velocity in Y-direction and (–g) is the acceleration due to gravity directed in the downward direction.
The expression for the component of velocity in Y-direction is given as.
[tex]u = v\sin \theta[/tex]
Substitute [tex]v\sin\theta[/tex] for u in the above expression.
[tex]y = \left( {v\sin \theta } \right)t + \frac{1}{2}\left( { - g} \right){t^2}[/tex] …… (2)
Substitute 5m/s for v, 4m for x and [tex]{15^ \circ }[/tex] for in equation (1).
[tex]\begin{aligned}t&=\frac{{4\,{\text{m}}}}{{\left({\left( {5\,{\text{m/s}}}\right)\left( {\cos {{15}^ \circ }}\right)}\right)}}\\&=0.828\,{\text{s}}\\\end{aligned}[/tex]
Substitute [tex]0.828\,{\text{s}}[/tex] for t, 5m/s for v, [tex]9.8\,{\text{m/}}{{\text{s}}^{\text{2}}}[/tex] for g and [tex]{15^ \circ }[/tex] for [tex]\theta[/tex] in equation (2).
[tex]\begin{aligned}y&=\left( {\left( {5\,{\text{m/s}}} \right)\sin \left( {{{15}^ \circ }} \right)} \right)\left( {0.828\,{\text{s}}} \right) + \frac{1}{2}\left( { - 9.8\,{\text{m/}}{{\text{s}}^{\text{2}}}} \right){\left( {0.828\,{\text{s}}} \right)^2}\\&=1.071 - 3.36 \\&=- 2.29\,{\text{m}}\\\end{aligned}[/tex]
Thus, the stuntman can jump from one building to another because its vertical distance is less than the difference in height of buildings.
Learn more:
1. Motion under force https://brainly.com/question/6125929.
2. Projection of ball https://brainly.com/question/11023695.
3. Conservation of momentum https://brainly.com/question/9484203.
Answer Details:
Grade: High School
Subject: Physics
Chapter: Kinematics
Keywords:
Force, motion, parabolic path, acceleration due to gravity, time of flight, angle of inclination, inclined plane, buildings, height difference, cliff, horizontal direction, vertical direction, 2.29 m, 2.3m, 0.828sec.
The question involves calculating whether a stuntman can jump from one rooftop to another using principles of projectile motion. By calculating the horizontal and vertical components of the stuntman's velocity, and the time and distance he will travel, we determine he will fall approximately 2.9 meters. Since the other roof is only 2.5 meters lower, the stuntman will successfully make the jump.
Explanation:The student's question involves determining whether a stuntman can safely jump from one building to another, given his initial velocity, the angle of his jump, and the distance and height difference between the buildings. This is a classic physics problem involving projectile motion, where we consider the horizontal and vertical components of the motion separately. We can ignore air resistance and use the kinematic equations to solve this problem.
Firstly, we need to find the horizontal and vertical components of the initial velocity. The horizontal component, vx, is v × cos(θ), and the vertical component, vy, is v × sin(θ), where v is the initial velocity and θ is the angle of launch. For a jump of 5.0 m/s at 15°:
vx = 5.0 m/s × cos(15°) ≈ 4.83 m/svy = 5.0 m/s × sin(15°) ≈ 1.29 m/sThe time, t, it takes to travel horizontally across the 4.0 m gap is found using t = d / vx, where d is the horizontal distance:
t = 4.0 m / 4.83 m/s ≈ 0.83 s
Now, let's determine if he will drop less than 2.5 m in this time frame. We use the equation of motion for vertical displacement, Δy = vyt + ½gt², with g being the acceleration due to gravity (9.81 m/s²) to find the vertical drop:
Δy = (1.29 m/s × 0.83 s) + (0.5 × -9.81 m/s² × (0.83 s)²) ≈ -2.9 m
The stuntman will fall approximately 2.9 m, thus he will make it to the other roof, which is 2.5 m lower than his initial jump point.
Learn more about Projectile Motion here:https://brainly.com/question/29545516
#SPJ2
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200 g ball that is moving to the left at 3.0 m/s.
If the collision is perfectly elastic, what are the speeds of each ball after the collision?
The final speed of the 100-g ball is about 5.3 m/s to the left
The final speed of the 200-g ball is about 1.7 m/s to the right
[tex]\texttt{ }[/tex]
Further explanationNewton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.
[tex]\large {\boxed {F = ma }[/tex]
F = Force ( Newton )
m = Object's Mass ( kg )
a = Acceleration ( m )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
mass of ball 1 = m₁ = 100 g
initial velocity of ball 1 = u₁ = 4.0 m/s
mass of ball 2 = m₂ = 200 g
initial velocity of ball 2 = u₂ = -3.0 m/s
Asked:
final velocity of ball 1 = v₁ = ?
final velocity of ball 2 = v₂ = ?
Solution:
Firstly , we will use Conservation of Momentum Law as follows:
[tex]m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2[/tex]
[tex]100(4.0) + 200(-3.0) = 100v_1 + 200v_2[/tex]
[tex]-200 = 100v_1 + 200v_2[/tex]
[tex]-2 = v_1 + 2v_2[/tex] → Equation 1
[tex]\texttt{ }[/tex]
If the collision is perfectly elastic , then:
[tex]u_1 - u_2 = v_2 - v_1[/tex]
[tex]4.0 - (-3.0) = v_2 - v_1[/tex]
[tex]7.0 = v_2 - v_1[/tex] → Equation 2
[tex]\texttt{ }[/tex]
Let's solve the two Equations above:
(Equation 1) + (Equation 2) ↓
[tex]-2 + 7.0 = (v_1 + 2v_2) + (v_2 - v_1)[/tex]
[tex]5.0 = 3v_2[/tex]
[tex]v_2 = 5.0 \div 3[/tex]
[tex]v_2 = 1\frac{2}{3} \texttt{ m/s}[/tex]
[tex]v_2 \approx 1.7 \texttt{ m/s}[/tex]
[tex]\texttt{ }[/tex]
[tex]-2 = v_1 + 2v_2[/tex]
[tex]-2 = v_1 + 2(1\frac{2}{3})[/tex]
[tex]v_1 = -2 - 3\frac{1}{3}[/tex]
[tex]v_1 = -5\frac{1}{3} \texttt{ m/s}[/tex]
[tex]v_1 \approx -5.3 \texttt{ m/s}[/tex]
[tex]\texttt{ }[/tex]
Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441Newton's Law of Motion: https://brainly.com/question/10431582Example of Newton's Law: https://brainly.com/question/498822[tex]\texttt{ }[/tex]
Answer detailsGrade: High School
Subject: Physics
Chapter: Dynamics
[tex]\texttt{ }[/tex]
Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant
An object moves in uniform circular motion at 25 m/s and takes 1.0 second to go a quarter circle. What is the radius of the circle ? helpppppp me
Elements in Group 18, at the far right of the periodic table, are called what?
Transition Metals
Noble Gases
Alkaline Metals
Halogens
What does the x represent on a motion map?
A. reference point
B. total displacement
C. speed
D. velocity
(I was thinking it would be time...)
Answer;
-Reference point
The x represents the reference point on a motion map.
Explanation;
-Motion maps are another way to represent the motion of an object. (other representations are graphical and mathematical models).
-Motion maps are a visual way to represent an object’s motion at various time
-. A reference point is a place or object used for comparison to determine if something is in motion. An object is in motion if it changes position relative to a reference point.
-The relationships between motion and reference point is that When an object changes position over time relative to a reference point, the object is in motion. This means that there relationship is they are similar.
The x represents a reference point on a motion map. The correct option is A.
What is a reference point?
Another technique to depict an object's motion is motion maps. Models in mathematics and graphics are alternative forms of representation. A visual representation of an object's motion through time is called a motion map.
A reference point is a location or object that is used as a point of comparison to ascertain whether something is moving. When an object shifts in relation to a fixed point, it is said to be in motion.
The relationship between motion and reference point is that an object is in motion when its position with respect to a reference point varies over time. This indicates that they have a similar relationship.
Therefore, the value x represents a reference point on a motion map. The correct option is A.
To know more about reference points follow
https://brainly.com/question/20630466
#SPJ2
Jamal plugged his radio into the wall. The radio's plug had copper wires surrounded by rubber. The rubber protects Jamal from______?
me answer be ye Conduction
Jenny wants to determine if a new brand name washing detergent is better than her old detergent she washed ten dirty t-shirts with the new washing detergent and ten dirty t-shirts with the old detergent identify the dependent and independent variables for this experiment
the independent varible is old and new and the dependent variable is 20 T-shirts can I get brainliest
Explanation:
An independent variable is a variable whose value does not depend on any other factor. Whereas a dependent variable is a variable whose value depends on another factor.
Hence, in the given situation old and new detergent are independent variables as they do not depend on any other factor.
On the other hand, 20 dirty T-shirts are dependent variable because they get clean only if the detergent is strong enough.
the amount of matter in an object is called
What causes the electric charges to flow from one end of the battery to the other?
a balance in electric potential
a balance in resistance
a difference in electric potential
a difference in resistance
Answer:
c. a difference in electric potential
Explanation:
Where could convection currents form? Check all that apply.
in a sand dune
in a freshwater lake
in the atmosphere
in outer space
in Earth’s mantle
Answer:
In The Atmosphere
Explanation:
edg2021
Which type of wave is characterized by circular motion?
A. transverse wave
B. longitudinal wave
C. primary wave
D. surface wave
Answer:
D. surface wave
Explanation:
A) Transverse Waves
As the energy is propagated through the medium and then medium particles moves to and fro perpendicular to wave propagation then this is known as transverse waves.
B) Longitudinal waves
As energy is propagated through the medium and then medium particles oscillates in direction of wave propagation then it is known as longitudinal waves.
C) Primary waves
these waves are due to compression and expansion of medium and it can travel at high speed. It is moreover similar to longitudinal waves
D) Surface Waves
In these type of waves the disturbance or energy is propagated through the medium particles on the surface of the water in the shape of concentric circles.
So surface wave is characterized by circular motion
A 521-kg meteor is subject to a force of 2520 N. What is its acceleration?
Answer:
Acceleration, [tex]a=4.83\ m/s^2[/tex]
Explanation:
It is given that,
Mass of the meteor, m = 521 kg
Force acting on the meteor, F = 2520 N
Let a is the acceleration of the meteor. It can be calculated using the Newton's second law of motion. According to this law the force acting on an object is equal to the product of mass and acceleration with which it is moving. Mathematically, it is given by :
[tex]F=m\times a[/tex]
[tex]a=\dfrac{F}{m}[/tex]
[tex]a=\dfrac{2520\ N}{521\ kg}[/tex]
[tex]a=4.83\ m/s^2[/tex]
So, the acceleration of the meteor is [tex]4.83\ m/s^2[/tex]. Hence, this is the required solution.
What is the half-life of an isotope that decays to 25% of its original activity in 70.8 hours?
Would you be doing any more work by going up the stairs twice as fast?
What does the symbol "E3" represent? ...?
Answer:
E₃ = energy in third energy level.
Explanation:
The energy of an electron is third orbit is given by :
[tex]E=-\dfrac{13.6Z^2}{n^2}[/tex]
Where
Z is the atomic number
n is principal quantum number and n = 1,2,3....
i.e. the energy of an electron is inversely proportional to the principal quantum number.
E₁,E₂,E₃.......... shows the energy of an electron in first, second and third energy level respectively.