how many electrons are in the highest occupied energy level of these atoms?

a. barium
b. sodium
c. aluminum
d. oxygen

Answers

Answer 1
Final answer:

Barium: 2 electrons, Sodium: 1 electron, Aluminum: 3 electrons, Oxygen: 6 electrons

Explanation:

The number of electrons in the highest occupied energy level can be determined by looking at the electron configuration of each element. For barium (Ba), the electron configuration is 2-8-18-18-8-2, so there are 2 electrons in the highest occupied energy level. Sodium (Na) has an electron configuration of 2-8-1, so there is 1 electron in the highest occupied energy level. Aluminum (Al) has an electron configuration of 2-8-3, so there are 3 electrons in the highest occupied energy level. Oxygen (O) has an electron configuration of 2-6, so there are 6 electrons in the highest occupied energy level.

Learn more about electron configuration here:

https://brainly.com/question/29157546

#SPJ11


Related Questions

64g of sulfur dioxide (so2) contains 32g of oxygen.calculate how much sulphur it contains

Answers

There is 32 g of sulfur in 64 g of SO2~

Given the atomic weights of carbon, 12.01; hydrogen, 1.01; and oxygen, 16.0, what is the molar mass of glucose?
A) 166.18 grams
B) 174.12 grams
C) 180.18 grams
D) 250.12 grams

Answers

The answer is C. There are 6 Carbon (6x12.01=72.06), 12 Hydrogen (12x1.01=12.12) and 6 Oxygen (6x16=96). Altogether 72.06,12.12 and 96 add to 180.18

How will adding NaCl affect the freezing point of a solution?

Answers

Adding NaCl (salt) will lower the freezing point. Examples of this include salt water bodies like the ocean, and why salt is spread on roadways during snow and icy conditions.

Answer is: adding NaCl will lower the freezing point of a solution.

A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).

The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.

Equation describing the change in freezing point:  

ΔT = Kf · b · i.

ΔT - temperature change from pure solvent to solution.

Kf - the molal freezing point depression constant.

b -  molality (moles of solute per kilogram of solvent).

i - Van’t Hoff Factor.

Dissociation of sodium chloride in water: NaCl(aq) →  Na⁺(aq) + Cl⁻(aq).

A)How many moles of O2 are required for the complete combustion of 2.2 g of C3H8 to form CO2 and H2O?
b)A 65.25 g sample of CuSO4•5H2O (M = 249.7) is dissolved in enough water to make 0.800 L of solution. What volume of this solution must be diluted with water to make 1.00 L of 0.100 M CuSO4?

Answers

Final answer:

0.2495 moles of  [tex]O_2[/tex] are required for the complete combustion of 2.2 g of [tex]C_3H_8[/tex] to form [tex]CO_2[/tex] and [tex]H_2O[/tex]. This is calculated based on the balanced chemical equation for the combustion of propane and the molar mass of  [tex]C_3H_8[/tex].

Explanation:

To determine how many moles of [tex]O_2[/tex] are required for the complete combustion of 2.2 g of  [tex]C_3H_8[/tex] to form  [tex]CO_2[/tex] and H2O, we need to use the balanced chemical equation for the combustion of propane (C3H8):

[tex]C_3H_8[/tex] + 5 [tex]O_2[/tex] → 3 [tex]CO_2[/tex] + 4[tex]H_2O[/tex]

First, we calculate the moles of C3H8:

moles of C3H8 = mass (g) / molar mass (g/mol)

molar mass of  [tex]C_3H_8[/tex] = 44.10 g/mol

moles of  [tex]C_3H_8[/tex] = 2.2 g / 44.10 g/mol = 0.0499 mol

From the balanced equation, 1 mole of  [tex]C_3H_8[/tex] reacts with 5 moles of  [tex]O_2[/tex]. So, for 0.0499 moles of  [tex]C_3H_8[/tex], the moles of  [tex]O_2[/tex] required would be:

moles of  [tex]O_2[/tex] needed = 0.0499 mol  [tex]C_3H_8[/tex] × 5 moles O2/mol  [tex]C_3H_8[/tex] = 0.2495 mol  [tex]O_2[/tex]

0.2495 moles of  [tex]O_2[/tex] are required for the complete combustion of 2.2 g of  [tex]C_3H_8[/tex].

When a 6.50-g sample of solid sodium hydroxide dissolves in 100.0 g of water in a coffee-cup calorimeter, the temperature rises from 21.6 degrees C to 37.8 degrees C. Calculate delta H (in kJ/mol NaOH) for the solution process. Assume that the specific heat of the solution is the same as that of pure water.

Answers

To find the enthalpy change for the dissolution of sodium hydroxide, calculate the heat absorbed by the water (
H = -q / n), convert the mass of NaOH to moles, and divide the heat absorbed by the number of moles.

To calculate the enthalpy change (
H) for the solution process of sodium hydroxide (NaOH), we'll use the formula
H = -q / n, where 'q' is the heat absorbed by the water and 'n' is the number of moles of NaOH.

Step 1: Calculate the amount of heat absorbed (q) using the formula q = mc
delta T, where 'm' is the mass of the water plus the NaOH, 'c' is the specific heat capacity of water (4.18 J/g°C), and
delta T is the change in temperature.

Step 2: Convert the mass of NaOH to moles by using its molar mass (40.00 g/mol).

Step 3: Calculate
H using the moles and the heat absorbed.

For our case:

q = (100.0 g + 6.50 g)
4.18 J/g°C
(37.8°C - 21.6°C)

Calculate q and convert it to kilojoules, since 1 kJ = 1000 J.

6.50 g of NaOH is 0.1625 mol, because 6.50 g / 40.00 g/mol = 0.1625 mol.

Step 4: Now apply the formula
H = -q / n.

the density of ethanol is 0.789g/ml at 20°c. find the mass of a sample of ethanol that has a volume of 150.0 ml at this temperature.

Answers

Density=mass/volume

O.789 g/ml=m/150ml
M=0.789*150=118.35 g

The density of the substance is denoted by the symbol ρ or D. The mass of the ethanol sample with a density of 0.789 g/ml in 150 mL at 20°C will be 118.35 g.

What is the relationship between density and mass?

The density of the object has been defined by the mass divided by the unit of volume and shows the direct relationship between mass and density. A heavier object has more density as compared to a lighter object.

The formula for density is given as,

Density = mass ÷ volume

or Mass = density × volume

Given,

Density = 0.789 gm/mL

Volume = 150 mL

Mass is calculated by substituting values in the above formula as,

Mass = density × volume

Mass = 0.789 gm/mL × 150 mL

Mass = 118.35 g

Therefore, a 150.0 mL ethanol at a temperature 20°C with a density of 0.789 gm/mL has a mass of 118.35 g.

Learn more about density and mass here:

https://brainly.com/question/12006917

#SPJ5

Which element has six energy levels?

A) rubidium (Rb)

B) cesium (Cs)

C) potassium (K)

D) sodium (Na)

Answers

Answer:    B) cesium (Cs)
The energy level is the electron cloud number and only Cesium is large enough to have electrons in its sixth shell. Thus,
the answer is B.

All of the following can be used to define a base except
a hydronium ion donor in a reaction
a substance that increases the concentration of hydroxide ions
an electron pair donor in a reaction
a substance that is a hydrogen ion acceptor in a reaction

Answers

A base is not defined as a substance that donates hydronium ions, it donates hydroxide ions. The first option is correct.

Answer: The correct statement is a hydronium ion donor in a reaction.

Explanation:

According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions [tex](OH^-)[/tex] when dissolved in water and an acid is defined as a substance which donates hydronium ions [tex](H_3O^+)[/tex] in water.

According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.

According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.

A substance that increases the hydroxide ion concentration of a solution is an Arrhenius base.

Hence, the correct statement is a hydronium ion donor in a reaction.

A molecule of a certain compound contains two nitrogen atoms and four oxygen atoms. What is the molecular formular for this compound?

Answers

The molecular formula for what you described is N2O4, otherwise known as dinitrogen tetroxide. It is very useful as a synthesizing reagent, and also as an oxidizer which is why it is used in rocket propulsion engineering. 

Nitrogen dioxide decomposes at 300°C via a second-order process to produce nitrogen monoxide and oxygen according to the following chemical equation.
2 NO2(g) → 2 NO(g) + O2(g).
A sample of NO2(g) is initially placed in a 2.50-L reaction vessel at 300°C. If the half-life and the rate constant at 300°C are 11 seconds and 0.54 M-1 s-1, respectively, how many moles of NO2 were in the original sample?

I just need an idea on how to approach this problem. ...?

Answers

Final answer:

To calculate the initial moles of NO2, use the half-life formula for a second-order reaction, adjust to solve for initial concentration, and then multiply by the volume of the reaction vessel.

Explanation:

To find out how many moles of NO2 were in the original sample for a second-order reaction, we can use the half-life formula for a second-order reaction, which is t1/2 = 1 / (k[NO2]0), where t1/2 is the half-life, k is the rate constant, and [NO2]0 is the initial concentration of NO2. The problem provides the half-life (t1/2 = 11 seconds) and the rate constant (k = 0.54 M-1 s-1). Rearranging the half-life formula to solve for the initial concentration gives us [NO2]0 = 1 / (k * t1/2).

After calculating [NO2]0, we can convert concentration to moles by multiplying the concentration by the volume of the reaction vessel. Remember that concentration is in moles per liter (M) and volume is in liters (L), so the equation will be moles of NO2 = [NO2]0 * volume of the vessel.

How many sigma and how many pi bonds are in an ethyne molecule c2h2?

Answers

Number of sigma bonds are 3 and number of pi bonds are 2. Hope it helps.

From your knowledge about the distribution of electrons in the levels and from the atomic number (in parentheses), indicate the most likely charge on the ion when this atom forms an ion. (Remember the 2, 8, 18 level distribution.)

Answer Choices:
0
-1
+1
-2
+2

Answers

Hydrogen is a special case (there are a lot of special cases in chemistry)

Atomic number: 1

Electron configuration 1s1.

If hydrogen gains 1 electron it will form the ionn H- . This is feasible and likely to happen because with on additional electron the electron configuration will be 1s2, and it will complete the las shell (same confiugration of He) which is a stable confirguration.

Then the answer is 1-. But you will find that H can also loose its electron and form the ion H+.

A more representative analysis can be done with Oxygen, whose atomic number is 8 and the electron configuration is 2s2 2p6, then by gaining two electrons it will acquire the stable electron configuration of Ne: 2s2 2p8


By gaining two electrons, the ion has two negative charges, this is O 2-.

Whith this I have ilustrated the method: 1) use the atomic number to make the electron confirguration, 2) look at the valence electron shell and determine if it is easier to loose electrons or to gain electrons (gain 1 or two electrons is easier than loosing 7 or 6 electrons) to acquire the electron configuration of the closest Noble gas (full valence electron shell)

A current of 0.15 A is passed through an aqueous solution of K2PtCl4. How long will it take to deposit 1.00 g Pt(s) (M = 195.1)?

Answers

Final answer:

To deposit 1.00 g of platinum with a current of 0.15 A, it will take approximately 1.831 hours. This is calculated by first determining the number of moles of Pt, then calculating the moles of electrons, converting them to coulombs using Faraday's constant, and finally using the charge to find the time required.

Explanation:

Calculating Time for Electrodeposition

To calculate the time it takes to deposit 1.00 g of platinum (Pt) using a current of 0.15 A in an electrolytic cell, we first need to determine the number of moles of Pt to be deposited. Using the molar mass of Pt (195.1 g/mol), we have:

Number of moles (Pt) = mass (Pt) / Molar mass (Pt)

= 1.00 g / 195.1 g/mol

= 0.005126 moles

Platinum (Pt) is deposited according to the reaction:

Pt2+ + 2e- → Pt(s)

Two moles of electrons are required to deposit one mole of Pt.

Number of moles of electrons = 2 × Number of moles (Pt)

= 2 × 0.005126

= 0.010252 moles

Next, we convert moles of electrons to coulombs using Faraday's constant, which states that 1 mole of electrons is equivalent to 96485 C:

Total charge (Q) = Number of moles of electrons × Faraday's constant

= 0.010252 moles × 96485 C/mol

= 989.2 C

Finally, we use the formula Q = It to find time (t), where I is the current and t is the time.

To find the time:

Time (t) = Total charge (Q) / Current (I)

= 989.2 C / 0.15 A

= 6594.67 seconds

To convert seconds to hours, divide by 3600:

Time in hours = 6594.67 s / 3600 s/h

= 1.831 hours

How would your calculated %P2O5 value be affected if you had not used this blank solution

Answers

Final answer:

If you did not use the blank solution, your calculated %P2O5 value would likely be higher. The blank solution helps to account for other influences in the experiment, providing a baseline. Without it, other factors could contribute to a falsely high %P2O5 reading.

Explanation:

Your calculated %P2O5 value would likely be higher if you did not use the blank solution. This is because the blank solution is designed to account for any influence or interference from other substances in the experiment. It provides a 'baseline' or 'zero' level, to make sure the results you measure are due to the presence of P2O5 alone.

For instance, if the instrument you're using to measure the %P2O5 has an operator error or systematic error, such as stray light that causes a small reading, this value is considered in the blank solution absorbance. Therefore, when you subtract this value from your experimental readings, you get a more accurate measurement of your P2O5.

If you just measure the P2O5 without using a blank, your reading could include errors from these other factors, giving you a higher %P2O5 than is actually present. Hence, not using a blank solution could give you a false high level of P2O5.

Learn more about Usage of blank solution in experiment here:

https://brainly.com/question/14331594

#SPJ3

Determine the identity of a cube of metal that measures 1.2 cm on each side and has a mass of 15.4g.

Answers

Final answer:

To identify the metal of the cube, calculate the cube's density by dividing its mass (15.4g) by its volume (1.728 cm³), which gives a density of approximately 8.91 g/cm³. This density can be compared to known densities to determine the cube's metal type.

Explanation:

The identity of a metal cube can be determined using its mass and volume to calculate its density, which can then be compared to known densities of various metals. A cube with each side measuring 1.2 cm has a volume given by the formula V = a³ where a is the length of a side. The mass of the cube is 15.4 g, and therefore the density can be calculated by dividing the mass by the volume.

To find the volume of the cube:
V = 1.2 cm × 1.2 cm × 1.2 cm = 1.728 cm³.

Now, to get the density:
density = mass/volume = 15.4 g / 1.728 cm³ ≈ 8.91 g/cm³. This density can be matched to a list of metallic element densities to identify the metal.

Learn more about Density here:

https://brainly.com/question/29775886

#SPJ3

What important result did Becquerel observe when he placed the uranium salt crystals and unexposed photographic film in a drawer?

-The crystals phosphoresced within the drawer and exposed the film.
-The crystals did not phosphoresce within the drawer but did expose the film.
-The crystals phosphoresced within the drawer but did not expose the film.
-The crystals did not phosphoresce within the drawer and did not expose the film.

Answers

The correct answer is "The crystals did not phosphoresce within the drawer but did expose the film."

Becquerel  is credited to have discovered radioactivity. Becquerel was studying the properties of x-ray using naturally fluorescent minerals. Uranium shows radioactive decay. It is the high energy invisible radiation from uranium that exposed the photographic film.

Three highways connect the centers of three towns and form a triangle. A cell phone company wants to place a new cell tower so that it is the same distance from the centers of the three towns. How can the company find where to place the tower?

Answers

Answer:

For the tower to be the same distance from each of the centers, the company must find the point that is equidistant from the vertices of the triangle. This is the circumcenter of the triangle and can be found by constructing the point of concurrency of the perpendicular bisectors of the triangle.

Explanation:

sample response

Whats another name for cytosol

Answers

Another name for cytosol is cytoplasmic matrix. This is the liquid that is found in the cells. It is how the organelles are suspended within the cell.

Another name for cytosol is cytoplasmic matrix. This fluid can be found inside cells. It has to do with how the cell's organelles are held in suspension.

Numerous crucial metabolic processes occur in the cytosol, which also serves as a conduit for the movement of chemicals and ions throughout the cell. It offers a dynamic setting that supports the cellular machinery and enhances the cell's overall functionality. The term "cytoplasmic matrix" refers to the fluid-like substance (cytosol) that provides the cytoplasmic organelles and molecules with their structural support.

To know more about cytosol, here:

https://brainly.com/question/29435961

#SPJ6

Which stage in the free radical substitution of methane by chlorine will have the lowest activation
energy?
A CH3• + Cl 2 → CH3Cl + Cl •
B Cl • + Cl • → Cl 2
C Cl • + CH4 → CH3• + HCl
D Cl 2 → Cl • + Cl •

Answers

Final answer:

The stage with the lowest activation energy in the free radical substitution of methane by chlorine is when two chlorine free radicals combine to form a chlorine molecule.

Explanation:

The stage in the free radical substitution of methane by chlorine that will have the lowest activation energy is the step B Cl • + Cl • → Cl2. This is because this step involves the combination of two chlorine free radicals to form chlorine molecule which is an exothermic reaction, hence requires the least amount of energy. The other steps either involve breaking of bonds (in the case of Cl2 → Cl • + Cl • and Cl • + CH4 → CH3• + HCl), or the substitution of chlorine (CH3• + Cl 2 → CH3Cl + Cl •) all of which require more energy.

Learn more about Free Radical Substitution here:

https://brainly.com/question/16811879

#SPJ12

how many molecules are there in 237 grams of CCl4

Answers

Final answer:

You can find the number of molecules in a given mass of substance by first finding the number of moles in the mass, and then multiplying by Avogadro's number. Using this method, 237 grams of CCl4 contains approximately 9.27 × 10^23 molecules.

Explanation:

To calculate the number of molecules in 237 grams of CCl4, you need to understand Avogadro's number and the concept of the mole. The molar mass of CCl4 is about 154 g/mol. So, first let's find out how many moles are in 237 grams.

Number of Moles = Mass / Molar Mass = 237 g / 154 g/mol = 1.54 moles.

Avogadro's number states there are 6.02214076 × 10^23 molecules in one mole.

So, the number of molecules in 1.54 moles would be: Number of Molecules = Number of Moles * Avogadro's Number = 1.54 moles * 6.02214076 × 10^23 molecules/mole

The result is approximately 9.27 × 10^23 molecules of CCl4.

Learn more about Number of Molecules here:

https://brainly.com/question/32071669

#SPJ6

There are approximately 9.28  imes 10^23 molecules of CCl4.

To calculate the number of molecules in 237 grams of CCl4 (carbon tetrachloride), we first need to determine the molar mass of CCl4. The molar mass of carbon (C) is approximately 12.01 g/mol, and that of chlorine (Cl) is approximately 35.45 g/mol. Since CCl4 has one carbon atom and four chlorine atoms, its molar mass is (12.01 g/mol + (4  imes 35.45 g/mol) = 153.81 g/mol.

Next, we use the given mass of CCl4 to find the number of moles:

237 g CCl4  imes  rac{1 mol CCl4}{153.81 g CCl4} = 1.541 moles of CCl4

Using Avogadro's number, which is 6.022  imes 1023 molecules per mole, we can then calculate the number of molecules:

1.541 moles  imes 6.022  imes 1023 molecules/mol = 9.28  imes 1023 molecules of CCl4

So, there are approximately 9.28  imes 1023 molecules in 237 grams of CCl4.

The half-life of a radioactive element is 1250 years. What percent of atoms remain after 7500 years?

Answers

The percent of atoms left are 6.25%

What can scientists learn by studying fossils? I. how the Earth's surface has changed over time II. the appearance of an organism and its structures III. how species have changed over time IV. how the Earth's climate has changed over time

Answers

All of the above!

By analyzing the remains of fossilized organisms (such as old animal bones or plants), scientists can approximate what the organism might have looked like and the climate/environment it lived in -- and based on that, they can try to figure out how the Earth's surface has changed over time. Also, they can use the fossil to compare it to creatures that live now to see what has changed in that species over time.

Scientist can learn about Appearance of an organism and its structure by studying the fossils. hence, option" 2" Is correct.

What can  scientist learn from fossil?

By the method of radiocarbon-dating scientist can learn about an organism and its structures in the fossils, different kinds of rocks  and about the earth strata.

hence, option" 2" is the correct option.

learn more about  fossils.

https://brainly.com/question/686732

#SPJ2

f an atom has 3 electrons outside of its nucleus, which combination of protons and neutrons would result in a neutral atom

Answers

Final answer:

A neutral atom must have the same number of electrons and protons.

Explanation:

A neutral atom must have the same number of electrons and protons. Therefore, if an atom has 3 electrons outside of its nucleus, it must also have 3 protons in its nucleus to be neutral. The number of neutrons does not affect the overall charge of the atom.

For example, a lithium atom (Li) has an atomic number of 3, which means it has 3 protons. If it also has 3 electrons, it will have a net charge of zero and be neutral.

In general, if an atom has a certain number of electrons, it must have an equal number of protons to maintain neutrality.

What volume will 0.875 moles of kr occupy at stp?

Answers

1 mole --------- 22.4 L at ( STP )
0.875 moles ----- ?

0.875 x 22.4 / 1 => 19.6 L

hope this helps!
Answer:

               Volume =  19.6 L

Solution:

                     As we know that one mole of any Ideal gas at standard temperature and pressure occupies exactly 22.4 dm³ volume.

Using this reference, we can calculate the volume occupied by Krypton (Ideal situation) as,

                     1 mole of Kr occupies  =  22.4 L of Volume

So,

                  0.875 moles of Kr will occupy  = X L of Volume

Solving for X,

                       X =  (0.875 mol × 22.4 L) ÷ 1 mol

                      X =  19.6 L

Which subatomic particle is responsible for chemical properties of atoms?
a. protons
b. neutrons
c. electrons
d. neutrons and protons user: what is the maximum number of electrons in the first electron shell, closest to the nucleus?
a. 1
b. 2
c. 4
d. 8

Answers

First question answer is, C. electrons 


4.00 g of He, 20.0 g F2, and 12.0 g Ar are placed in a 12.0-L container at 18.0 °C. The total pressure (in atm) in the container is _____ atm.

Answers

So total pressure is 5.62694 atm. Hope you are able to understand solution :-D

The total pressure in the container is approximately 3.00 atm

The question asks for the total pressure in a container holding different gases at a certain temperature, which is a typical problem in chemistry dealing with the ideal gas law. The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant (0.0821 atm·L/mol·K), and T is temperature in Kelvin.

To find the total pressure, we need to calculate the moles of each gas using their molar masses (He: 4.00 g/mol, F2: 38.00 g/mol, Ar: 39.95 g/mol), convert the temperature to Kelvin (18.0 °C + 273.15 = 291.15 K), and plug these values into the ideal gas law:

Moles of He = 4.00 g / 4.00 g/mol = 1.00 molMoles of F2 = 20.0 g / 38.00 g/mol ≈ 0.526 molMoles of Ar = 12.0 g / 39.95 g/mol ≈ 0.300 molTotal moles = 1.00 mol + 0.526 mol + 0.300 mol = 1.826 mol

Using the ideal gas law:
P = (nRT) / V

P = (1.826 mol × 0.0821 atm·L/mol·K × 291.15 K) / 12.0 L

P ≈ 3.68 atm

Thus, the total pressure in the container is approximately 3.68 atm.

ANY HELP IS GREATLY APPRECIATED! :D
The pH of a solution is defined as the ______ of the hydrogen ion.
As the pH of a solution increases, the concentration of ______ ions increases.
2
4
100
5
100,000
3
10,000
10
1,000,000
1,000

1.) Black coffee has a pH of 5, therefore its H+ concentration is ____ times greater than a solution with a pH of 10.
2.) Urine has a pH of 6, therefore its H+ concentration is _____ times greater than a solution with a pH of 9.
3.) Household ammonia has a pH of 11, therefore its H+ concentration is ______ times less than a solution with a p

Answers

1 is the one of thw bald guy in the suit  number 2 is d number 3 is proclamation 

Calculate the electrical energy per gram of anode material for the following reaction at 298 K:

Li(s) + MnO2(s) ----> LiMnO2(s)



Ecell = 3.15 V

Answers

The answer is:

E per gram = 0.45 V

The explanation:

when MnO2 is the substance who oxidized here so, the oxidizing agent and the anode here is Li.

and when the molar mass of Li is = 7 g/mol

and in our reaction equation we have 1 mole of Li will give 3.15 V of the electrical energy

that means that :

7 g of Li gives → 3.15 V

So 1 g of Li will give→ ???

∴ The E per gram = 3.15 V / 7 g of Li

= 0.45 V

What exactly are the physical properties of a candle that has been blown out?

Answers

Let's think, if you have a candle ( that is not blown out ) the physical properties are the candles mass and hence ( hence of the candle is the stiffness of the candle), weight, length, density, surface friction ( force resisting the relative motion of solid surface), and the energy content. You then, need to go to bed, so, therefore, you want to blow the candle out. Once you blow the candle out, the candle is evidently going to have at least a couple of different physical properties, than before it was blown out. The physical properties are a different color, the length of the candle, the texture, you could also apply the mass of the candleholder, and then, the mass of the candleholder and the candle, last but not least, the mass of just the candle. Once you observe the candle, you should be able to plug in those observations into the physical properties. As to, because you asked' what are the physical properties of a candle that has been blown out... We are going to assume that we did observe the candle, and the length of the candle in cm, after being blown out is 30cm. (12 inches; customary). Next, that the color of the candle is the same (let us say the original color is taffy pink).  We can then say that the texture of the candle is waxy and the top and smooth as you get to the bottom ( the texture depends on how long the candle was burning, but we are saying that we lit the candle, and then immediately blew the flame out ) . We now have the mass of the candleholder, which will scientificity stay the same. Now, for the mass of the candleholder and the candle, that all depends of how long you let it burn ( remember, we are saying we lit the wick and then immediately  blew the fame out ). So, the candle really didn't change is mass, so, therefore, wouldn't affect the mass of the candleholder including the candle. That also goes to the mass of the candle.
 

The MSDS for chloroform indicates that it is a clear liquid that has a pleasant smell and substantial vapor pressure. People should avoid inhaling its vapors, and it is sensitive to light. According to this information, how should chloroform be stored?
in an open, transparent container in the fume hood
in a closed, transparent container on the lab bench
in a closed, dark container in the fume hood
in an open, dark container on the lab bench

Answers

According to this information,  chloroform definitely should be stored in in a closed, dark container in the fume hood. As you can see in the text represented above, there is a sentence which poses as a prompt for you''it is sensitive to light'' .
I am pretty sure it will help you! Regards.

Answer:

Answer C

Explanation:

just took the test

Other Questions
Solve the system using elimination.5x + 4y = 123x 3y = 18 What do you do to store a link in a web browser? a. create a bookmark. b. type the link in the search field. c. click on the back button three times. d. refine your search results. From sea level,the biosphare goes up about 9 km and down about 19 km. Whats is the thickness of the biosphere in meters? which number is greater 56.01 56.10 or 56.011 What is the value of x? If necessary, round your answer to two decimal places. An ATP molecule is made up of which of the following?A) Phosphate groups, ribose sugar, adenine baseB) Phosphate groups, deoxyribose sugar, thymine baseC) Carboxylic group, ribose sugar, adenine base What does informal writing style mean? Veins are often formed from hot water solutions. true or false? Find the exact area of a circle having the given circumference.4(sqrt3 PI ) ...? A ball rolls off the edge of a horizontal roof at 10 m/s. 2 seconds later, the speed of the ball will be? a. 10 m/s b. 19.6m/s c. 29.6 m/s d.22 m/s ...? What type of government did the articles of confederation create? a. a loose confederation of strong state governments b. a federal system with a bicameral legislature and a president c. an alliance of weak and dependent states d. a strong, centralized government What is not true about bartering? Why are systematic names preferred over common names? A computer program that lets you investigate an image in 3-D is an example of what type of model?A.conceptualB.statisticalC.visualizationD.numerical a 155 gram sample of copper was heated to 150.0C then placed into 250 gram of water at 19.8C. (The specific heat of copper is 0.385J/gC.)Calculate the final temperature of the mixture. (assume no heat loss to the surroundings) what is the answer to this 10-4b What are some similarities of humpback whales and beluga whales? How does the plot of act 1 of Henrik Ibsens A Dolls House parallel the plots of more traditional plays?a)As in most traditional plays, the plot of act 1 of A Dolls House is designed to give the audience a short prologue showing whats coming next.b)As in most traditional plays, the plot of act 1 of A Dolls House is designed to provide exposition and build up the tension of the play.c)As in most traditional plays, the plot of act 1 of A Dolls House is designed to bring the conflict of the play to a head to hold the audiences attention.d)As in most traditional plays, the plot of act 1 of A Dolls House is designed to propel the action of the play toward its final resolution. How do writers use direct characterization in a story?A. by unveiling the thoughts and actions of the characterB. through the writers statements about the characterC. through the comments and reactions of other charactersD. by showing the characters comments about himself or herself Which of the following best supports the idea that the melting of glaciers in Antarctica is a global environmental threat?A. The melting of glaciers can cause sea levels on Earth to fall.B. The melting of glaciers can change ecosystems in Antarctica.C. The melting of glaciers can harm animal populations in Antarctica.D. The melting of glaciers can cause coastal flooding on other continents.I think it is A because it emphasizes that the whole Earth will be affected, while C shows that it is an environmental threat. Steam Workshop Downloader