What should happen when a piece of copper is placed in 1m hcl?
a. the copper is dissolved by the acid.
b. the copper is dissolved by the acid with the release of hydrogen gas.
c. the copper bursts into greenish flames.
d. nothing happens?
Final answer:
Nothing happens when a piece of copper is placed in 1M hydrochloric acid because copper is not reactive enough to displace hydrogen from the acid and no observable chemical reaction occurs.
Explanation:
When a piece of copper is placed in 1M hydrochloric acid (HCl), the correct option would be d. nothing happens. Copper is a less reactive metal and does not react with hydrochloric acid to produce hydrogen gas or any other substances. Reactions such as those with zinc in hydrochloric acid form hydrogen gas because zinc is a more active metal and can displace hydrogen from the acid. However, copper does not have sufficient reactivity to do this, and so when copper is placed into hydrochloric acid, there is no observable chemical reaction.
The solute dissociates slightly in the solvent. how will the slight dissociation affect the reported
The surface areas of four solutes are 2 mm2, 6 mm2, 10 mm2, and 4 mm2. Which solute will dissolve the quickest?
A) 2 mm2
B) 4 mm2
C) 6 mm2
D) 10 mm2
The answer is D.
10 mm2
Which of these are equal to 6.02 x 1023 particles?
12.01 g carbon (C)
44.08 g of silicon dioxide (SiO2)
16 g of ozone (O3)
16.04 g of carbon tetrahydride (CH4)
Answer:
Carbon and carbon tetrahydride (methane).
Explanation:
Hello,
In this case, it is not necessary to compute the particles for all the given masses, it is enough by knowing each substance's moles by knowing their molar mass and subsequently proof they equals 1 mole as long as 1 mole equals 6.022x10²³ which is the Avogadro's number; in such a way, the molar masses are:
[tex]M_C=12.01g/mol\\M_{SiO_2}=60.08g/mol\\M_{O_3}=48g/mol\\M_{CH_4}=16.04g/mol[/tex]
Therefore, the two cases are carbon and carbon tetrahydride or methane as shown below:
[tex]ParticlesC=12.01gC*\frac{1molC}{12.01gC}*\frac{6.022x10^{23}particlesC}{1molC} =6.022x10^{23}particlesC\\ParticlesCH_4=12.01gCH_4*\frac{1molCH_4}{12.01gCH_4}*\frac{6.022x10^{23}particlesCH_4}{1molCH_4}=6.022x10^{23}particlesCH_4[/tex]
Best regards.
What is the ph of a solution of 0.50 m acetic acid?
The equilibrium constant, kp, equals 3.40 at 25°c for the isomerization reaction: cis-2-butene ⇌ trans-2-butene. if a flask initially contains 1.00 atm of each gas, in what direction will the system shift to reach equilibrium?
Answer:
The reaction will proceed to the right (favoring the products).
Explanation:
Let's consider the following isomerization reaction.
cis-2-butene ⇌ trans-2-butene
To predict in what direction will shift to reach equilibrium, we have to calculate the reaction quotient (Qp).
[tex]Qp=\frac{p(trans-2-butene)}{p(cis-2-butene)} =\frac{1.00}{1.00} =1.00[/tex]
Since Qp (1.00) < Kp (3.40), the reaction will proceed to the right, so that the pressure of the product increases, the pressure of the reactant decreases, and Qp reaches the value of Kp.
What is the effect of an insoluble impurity, such as sand, on the observed melting point of a compound?]?
Final answer:
The presence of an insoluble impurity such as sand in a compound causes a lower observed melting point and a broader melting range, known as melting point depression. The impurity disrupts the crystal lattice, lowering the energy required for the substance to melt, and physically hinders a uniform melting process.
Explanation:
Effect of Insoluble Impurities on Melting Point
The presence of an insoluble impurity, such as sand, in a compound can alter its melting point. Typically, the observed melting point of a compound with impurities is lowered and the range over which melting occurs is broadened. This phenomenon is known as melting point depression, which is akin to freezing point depression. The introduction of an insoluble impurity disrupts the orderly crystal lattice of a pure substance, thereby requiring less energy to break the intermolecular forces among the molecules when heat is applied. Consequently, the substance starts to melt at a lower temperature.
When a compound undergoes melting, impurities like sand do not integrate into the crystal lattice. Instead, they remain as separate entities. As the majority component (for instance, a pure chemical) begins to melt, it may form small pools of liquid, which do not contain the impurity. Since the sand is insoluble, it doesn't contribute to the solution phase and hence doesn't affect the liquid's composition or properties directly. However, the presence of the sand broadens the range over which the compound melts because it can physically hinder the melting process. This leads to a melting range rather than a sharp melting point.
In practice, the presence of impurities can be identified by a melting point that is lower than expected for the pure compound and by a broader range of temperatures over which melting occurs, which is indicative of a less pure substance. Such a broad range is due to the impure solid melting at various temperatures, influenced by the amount and distribution of the impurity.
Which agency publishes the food code
The United States Food and Drug Administration (FDA) publishes the food code, providing guidelines and regulations for safe food handling and production.
Explanation:The agency that publishes the food code is the United States Food and Drug Administration (FDA). This agency issues codes that regulate the production, handling, and sale of food in the United States. Details about harmful microorganisms found in food and related aspects are also released by the FDA, as shown in their 'Bad Bug Book'.
The FDA's food codes serve as a model and guide for strengthening food safety by detailing specific procedures and practices required to prevent foodborne illnesses. Different from USDA, which conducts research and provides data on food and nutrition, the FDA directly oversees the food safety and integrity. Thus, when it comes to food code, the FDA should be the top-priority source.
Learn more about Food Code here:https://brainly.com/question/10504583
#SPJ12
The ka value for acetic acid, ch3cooh(aq), is 1.8Ã 10â5 m. calculate the ph of a 1.40 m acetic acid solution.
4). How does the Stoichiometry of a reaction (balanced equation) affect reaction Rate?
When titrating a strong monoprotic acid and koh at 25°c, the ph will be less than 7 at the equivalence point. ph will be greater than 7 at the equivalence point. titration will require more moles of base than acid to reach the equivalence point. ph will be equal to 7 at the equivalence point. titration will require more moles of acid than base to reach the equivalence point?
Answer:
yes
Explanation:
because u right
What is the reducing agent in the following reaction?
2Na + 2H2O → 2NaOH + H2
Answer: [tex]Na[/tex]
Explanation:
Oxidation reaction : When there is a loss of electrons and thus an increase in oxidation number.
[tex]M\rightarrow M^{n+}+ne^-[/tex]
Reduction reaction : when there is a gain of electrons and thus a decrease in oxidation number.
[tex]M^{n+}+ne^-\rightarrow M[/tex]
Sodium metal has gone under oxidation, as its oxidation state is changing from 0 in [tex]Na[/tex] to +1 in [tex]NaOH[/tex]
[tex]H^+[/tex] ion has gone under reduction, as its oxidation state is changing from +1 in [tex]H^+[/tex] to 0 in [tex]H_2[/tex]
Those chemical agents which get oxidized itself and reduce others is called reducing agents. Thus [tex]Na[/tex] is a reducing agent here.
What is the volume of 55 L of gas initially at 500 K and 4.25 atm when conditions change to STP?
How many milliliters of 0.100 m naoh are needed to neutralize 50.00 ml of a 0.150 m solution of acetic acid (ch3cooh), a monoprotic acid?
Note: M1 = 50.00 ml
V1 = 0.150 M
M2 = 0.100 M
Asked: V2?
Answer: First, first realize the reaction:
NaOH + CH3COOH = Na (+) + CH3COO (-) + H2O
Second, enter all known numbers into the molarity formula:
M = n / V
n = M * V
M1 * V1 = M2 * V2
V2 = M1 * V1 / M2
V2 = 50.00 ml * 0.150 M / 0.100 M
V2 = 75 ml
So, the NaOH needed to neutralize 50.00 ml of a solution of 0.1150 m of acetic acid (ch 3 co) is 75 ml.
Further ExplanationIn chemistry, molarity (abbreviated M) is one measure of the concentration of the solution. The molarity of a solution expresses the number of moles of a substance per liter of solution. For example, 1.0 liter of solution contains 0.5 mol of compound X, so this solution is called a 0.5 molar (0.5 M) solution. Generally, the concentration of aqueous aqueous solutions is expressed in molar units. The advantage of using molar units is the ease of calculation in stoichiometry because the concentration is expressed in moles (proportional to the actual number of particles). The disadvantage of using this unit is inaccuracy in volume measurement. Also, the volume of a liquid changes with temperature, so the molarity of the solution can change without adding or reducing any substances. Also, in a solution that is not very thin, the molar volume of the substance itself is a function of concentration, so the molarity-concentration relationship is not linear.
A neutralization reaction is a reaction where acids and bases react in aqueous solution to produce salt and water. The liquid sodium chloride that is produced in a reaction is called salt. Salt is an ionic compound consisting of cations from bases and anions from acids. Salt is an ionic compound that is not an acid or a base.
Strong-base Strong Acid Reaction
When the same amount of strong acid such as hydrochloric acid is mixed with a strong base such as sodium hydroxide, the result is a neutral solution. The reaction product does not have the characteristics of either acid or base.
Reactions Involving Weak Acids or Weak Bases
Reactions where at least one component is weak generally do not produce a neutral solution.
Learn more
definition of molarity https://brainly.com/question/4414479
definition of A neutralization reaction https://brainly.com/question/4414479
Details
Grade: College
Subject: Chemistry
keywords: molarity
Matter is neither created nor destroyed in a chemical reaction
Calculate the ph of a 0.060 m carbonic acid solution, h2co3(aq), that has the stepwise dissociation constants ka1 = 4.3 × 10-7 and ka2 = 5.6 × 10-11.
To calculate the pH of a 0.060 M carbonic acid solution, first, consider the first dissociation of the H2CO3. Calculate [H+] by taking the square root of Ka1 x [H2CO3]. Finally, express [H+] in terms of pH. The calculated pH is 3.69.
Explanation:To calculate the pH of a 0.060 M carbonic acid solution, we have to consider the stepwise dissociation of the carbonic acid, denoted by its dissociation constants Ka1 and Ka2. To see how this works, let's look at the first dissociation of H2CO3:
H2CO3(aq) = H+(aq) + HCO3- (aq)Ka1 = [H+][HCO3-]/[H2CO3]
Given, [H2CO3] = 0.060 M and Ka1 = 4.3 × 10-7, we can solve for [H+]. According to the ICE (Initial, Change, Equilibrium) approach, we approximate [H+] by the square root of Ka1 x [H2CO3]. Therefore, [H+] = √(4.3 × 10^-7 × 0.060) = 2.04 x 10^-4. We may ignore the second dissociation (Ka2) as it contributes negligibly to [H+].
Finally, we express [H+] in terms of pH. pH is the negative log to the base 10 of [H+], hence, pH = -log[H+] = -log(2.04 x 10^-4) = 3.69
Learn more about pH calculation here:https://brainly.com/question/36153729
#SPJ11
Lt takes 4 hr 39 min for a 2.00-mg sample of radium-230 to decay to 0.25 mg. what is the half-life of radium-230?
What does it mean for a weak acid to be in equilibrium?
A) The acids only slightly dissociate and readily undergo reverse reaction.
B)The position of equilibrium in weak acids lies more to the right than to the left.
C)At equilibrium there is a small amount of HA and more A- and H+
D) At equilibrium there is the same amount of HA, A- and H+
261 nm to millimeters
In the metric system, a millimeter measures length. The word "milli" is derived from the Latin word "mille," which means one thousandth. A millimeter is therefore one-thousandth of a meter. A millimeter is represented by the letter "mm." Here 261 nm is 0.000261 millimeters.
A nanometer is a length measurement that is one billionth of a meter. The nanometer is denoted by the sign "nm" in the international system of units, sometimes known as SI units. One nanometer can be represented as 1 x 10⁻⁹ meters in scientific notation.
Here,
1 mm = 1000000 nm
261 nm = 0.000261 mm
To know more about millimeters, visit;
https://brainly.com/question/428723
#SPJ6
0.000261 millimeters
If δh°rxn and δs°rxn are both positive values, what drives the spontaneous (favored) reaction and in what direction at standard conditions?
If δh°rxn and δs°rxn are both positive values, the reaction is spontaneous and favored at standard conditions.
Explanation:If δh°rxn and δs°rxn are both positive values, the reaction is spontaneous and favored at standard conditions. This is because a positive value of δh°rxn indicates an exothermic reaction, releasing energy, while a positive value of δs°rxn indicates an increase in disorder or randomness, which is favorable for a reaction to occur. Therefore, both factors - the release of energy and the increase in disorder - drive the reaction in the forward direction.
Learn more about Spontaneous reaction here:https://brainly.com/question/31199175
#SPJ12
Which process does not involve a chemical change? 1. cleaning the shower with lime away 2. burning charcoal on the grill 3. boiling water 4. digesting food?
Final answer:
Boiling water does not involve a chemical change, unlike cleaning the shower with lime away, burning charcoal on the grill, and digesting food.
Explanation:
The process that does not involve a chemical change is boiling water.
Boiling water is a physical change because it does not result in the formation of new substances. When water is boiled, it changes from a liquid to a gas, but the chemical composition of water remains the same.
On the other hand, cleaning the shower with lime away, burning charcoal on the grill, and digesting food all involve chemical changes. Cleaning the shower with lime away involves a chemical reaction to remove lime deposits. Burning charcoal on the grill involves the combustion of carbon compounds. Digesting food involves the breakdown of complex molecules into simpler ones by enzymes in the digestive system.
Write the net ionic equation for the equilibrium that is established when potassium hypochlorite is dissolved in water.
When potassium hypochlorite is dissolved in water, it dissociates into potassium ions and hypochlorite ions. Thus, the net ionic equation for this process is: KClO(s) -> K+(aq) + ClO-(aq).
Explanation:The net ionic equation represents the actual reaction happening in solution, excluding the spectator ions. When potassium hypochlorite (KClO) is dissolved in water, it dissociates completely into potassium ions (K+) and hypochlorite ions (ClO-).
So, the complete ionic equation is: KClO(s) -> K+(aq) + ClO-(aq).
The net ionic equation is the same as the complete ionic equation because there are no spectator ions in this case. Thus, the net ionic equation for the equilibrium that is established when potassium hypochlorite is dissolved in water is: KClO(s) -> K+(aq) + ClO-(aq)
Learn more about Net Ionic Equation here:https://brainly.com/question/35304253
#SPJ12
The net ionic equation for the equilibrium established when potassium hypochlorite dissolves in water involves only the hypochlorite ion reacting with water to form hypochlorous acid and hydroxide ion.
When potassium hypochlorite (KClO) is dissolved in water, it dissociates into potassium (K+) ions and hypochlorite (ClO-) ions.
Potassium is a spectator ion and does not participate in the equilibrium reaction that is established in the solution. Therefore, the net ionic equation for the equilibrium when potassium hypochlorite is dissolved in water only involves the hypochlorite ion and water.
The equation is as follows:
ClO-(aq) + H2O(l) ---> HClO(aq) + OH-(aq)
This equation represents the equilibrium between the hypochlorite ion and the hypochlorous acid and hydroxide ion in aqueous solution.
A compound is found to be 30.45% n and 69.55 % o by mass. if 1.63 g of this compound occupy 389 ml at 0.00°c and 775 mm hg, what is the molecular formula of the compound?
The molecular formula of the compound given the percentages and conditions is determined to be N₂O₄ by converting mass percentages to moles, using the ideal gas law to find molar mass, and then refining the empirical formula.
Finding the Molecular Formula:
To determine the molecular formula of the compound with 30.45% nitrogen (N) and 69.55% oxygen (O) by mass, we will follow several steps:
Determine the empirical formula:The molecular formula of the compound is N₂O₄.
A student pours 10.0 g of salt into a container of water and observes the amount of time it takes for the salt to dissolve. She then repeats the process using the same amounts of salt and water but this time she slowly stirs the mixture while it is dissolving. The student performs the experiment one more time but this time she stirs the mixture rapidly. In order to get the best results, the student should: A.keep the temperature of the water constant for all three trials B.repeat each trail multiple times C.use the same water container for all three trails D.all of above
Answer:
All of the above.
Explanation:
The stirring provides an aid to dissolve. So as compared to a not stirred solution the stirred and vigorously stirred solution will show rapid and more solubility of salt.
In order to study any phenomenon or an experiment we should perform the experiment with same conditions in all the trials. It minimizes the errors.
so we have to keep temperature constant, and the same water container in all the three trials. It gives accuracy to the result
Now the repetition is again required but for precision.
The nuclide as-76 has a half-life of 26.0 hours. if a sample of as-76 weighs 344 g, what mass of as-76 remains after 538 minutes?
The mass of [tex]\(\text{As-76}\)[/tex] remaining after 538 minutes is approximately [tex]\( 270.38 \text{ g} \).[/tex]
To determine the remaining mass of [tex]\(\text{As-76}\)[/tex] after 538 minutes given its half-life of 26.0 hours, we can use the concept of radioactive decay.
First, convert the given time from minutes to hours:
[tex]\[ 538 \text{ minutes} \times \frac{1 \text{ hour}}{60 \text{ minutes}} = 8.97 \text{ hours} \][/tex]
Next, we use the formula for radioactive decay:
[tex]\[ N(t) = N_0 \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} \][/tex]
Plug in the values:
[tex]\( N_0 = 344 \text{ g} \)[/tex][tex]\( t = 8.97 \text{ hours} \)[/tex][tex]\( t_{1/2} = 26.0 \text{ hours} \)[/tex]Calculate the fraction of the substance remaining after 8.97 hours:
[tex]\[ N(t) = 344 \left( \frac{1}{2} \right)^{\frac{8.97}{26.0}} \][/tex]
First, compute the exponent:
[tex]\[ \frac{8.97}{26.0} \approx 0.344 \][/tex]
Now calculate the remaining mass:
[tex]\[ N(t) = 344 \left( \frac{1}{2} \right)^{0.344} \][/tex]
[tex]\[ N(t) = 344 \times 0.786 \][/tex]
[tex]\[ N(t) \approx 270.38 \text{ g} \][/tex]
So, the mass of [tex]\(\text{As-76}\)[/tex] remaining after 538 minutes is approximately [tex]\( 270.38 \text{ g} \).[/tex]
Give the common name for the structure. ethyl isopropyl ketone tert-butyl ethyl ketone sec-butyl ethyl ketone ethyl isobutyl ketone isobutyl methyl ketone
Common names for ketones include the names of the alkyl groups attached to the carbonyl group followed by 'ketone'. Ethyl methyl ketone is an example with an ethyl group and a methyl group.
Explanation:The common names for ketones are typically derived by naming the alkyl groups attached to the carbonyl group, followed by the word ketone. For the ketones listed:
Ethyl isopropyl ketone refers to a ketone with an ethyl group and an isopropyl group attached to the carbonyl.Tert-butyl ethyl ketone has a tertiary butyl group and an ethyl group attached.Sec-butyl ethyl ketone consists of a secondary butyl group and an ethyl group attached.Ethyl isobutyl ketone has an ethyl group and an isobutyl group attached.Isobutyl methyl ketone, also known as 3-methyl-2-butanone, has an isobutyl group and a methyl group attached.For example, the ketone with four carbon atoms, with an ethyl group and a methyl group on either side of the carbonyl, is commonly known as ethyl methyl ketone.
A sample of chromium oxide is 76.5% chromium by weight. what is the simplest formula of the oxide?
Which is an endothermic process?
the process in which a substance loses heat energy
the process in which a substance loses kinetic energy
the process in which the molecular motion of a substance decreases
the process in which a substance gains energy
Answer: Option (d) is the correct answer.
Explanation:
Endothermic process is a process in which energy or heat is absorbed by reactant species.
For example, melting of ice cubes is an endothermic process as it is absorbing heat from the surrounding and gives a cooling effect.
Thus, we can conclude that the process in which a substance gains energy is an endothermic process.
Answer:
The process in which a substance gains energy.
Explanation:
In an endothermic process, a system absorbs energy from the surroundings, therefore increasing its internal energy.
Which is an endothermic process?
the process in which a substance loses heat energy. NO. This is an exothermic process because energy is transferred from the system to the surroundings.the process in which a substance loses kinetic energy. NO. According to the Law of Conservation of Energy, the total energy of an isolated system remains constant, that is, it cannot be created nor destroyed, only transferred and transformed from one form to another. In this case, kinetic energy lost by the substance is gained by the surroundings, so it is an exothermic process.the process in which the molecular motion of a substance decreases. NO. This is connected to the previous option. If molecular motion decreases it is because kinetic energy is being lost and transferred to the environment, in an exothermic process.the process in which a substance gains energy. YES. This coincides with the definition of an endothermic process.How many carbon atoms are in the longest chain?
At what temperature will 0.100 molal (M) NaCl(aq) boil?
Kb= 0.51 C kg mol^-1