Answer:
The magnitude of the flux is [tex]2.00 N m^2/C[/tex]
Explanation:
The electric flux through a planar area is defined as the product of electric field and the component of the area perpendicular to the field.
Electric flux = Electric field * Area * (angle between the planar area and the electric flux)
The equation is
[tex]\phi = E A cos(\theta)[/tex]
Where:
[tex]\phi[/tex]is the Electric Flux
A is the Area
E is the Electric field
[tex]\theta[/tex] is angle between a perpendicular vector to the area and the electric field
Now substituting the values,
[tex]\phi = 5.00 \times 4.00 \times cos(0)[/tex]
[tex]\phi = 5.00 \times 4.00 \times 1[/tex]
[tex]\phi = 2.00 N m^2/C[/tex]
The flux of a constant electric field in the z-direction through a rectangle in the xy-plane is zero, because the angle between the direction of the electric field and the direction of the normal to the area is 90 degrees, which makes the dot product zero.
Explanation:To calculate the magnitude of the flux of an electric field, we use the equation: Φ = E . A where Φ is the electric flux, E is the electric field, and A is the area of the surface. The dot (.) represents a dot product, which means we consider the angle between the field and the area. In this problem, the electric field (E) is given as 5.00 N/C and the area of the rectangle (A) is 4.00 m². Also, because the electric field is in the z-direction (up and down), and the rectangle is in the xy-plane (flat), the angle between the field and the area is 90 degrees.
However, the dot product for angles of 90 degrees is zero because cos(90°) = 0. So, regardless of the magnitudes of the electric field and the area, the flux is zero because Φ = E . A = EAcos(90°) = 0. Therefore, the correct answer is (a) 0.
Learn more about Electric Flux here:https://brainly.com/question/30267804
#SPJ11
The Hubble constant, $H_{0}$, is the ratio of the recessional velocity of a galaxy to its distance. The Hubble constant is estimated to be 70 km/sec per million parsecs of distance. (One parsec is equal to 3.26 light years.) Based on this ratio, how many billions of light years away would a galaxy be if it had a recessional velocity of 300,000 km/sec?
Answer:
14 billion light years away
Explanation:
v = Recessional velocity = 70km/s/million parsec
D = Proper distance
Hubble constant
[tex]70\ km/s=3260000\ ly\\\Rightarrow 1\ km/s=\dfrac{3260000}{70}\ ly[/tex]
From Hubble's law we have the relation
[tex]v=H_0D\\\Rightarrow D=\dfrac{v}{H_0}\\\Rightarrow D=\dfrac{3260000}{70}\times 300000}\\\Rightarrow D=13971428571.42857\ ly[/tex]
The distance in light years of the galaxy is 14 billion light years away
Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic force at any point in the magnetic field will act in:________
a. the same direction as the current.
b. a clockwise direction.
c. a counterclockwise direction.
d. the direction opposite to the current.
Answer:c
Explanation:
When the direction of current is towards the observer then the magnetic field around it will be in the form of concentric circles and its direction will be anti-clockwise when viewed from the observer side.
Whenever current is flowing in a current-carrying conductor then the magnetic field is associated with it and direction of the magnetic field is given by right-hand thumb rule according to which if thumb represents the direction of current then wrapping of fingers will give the direction of the magnetic field
Starting from rest at a height equal to the radius of the circular track, a block of mass 24 kg slides down a quarter circular track under the influence of gravity with friction present (of coefficient µ). The radius of the track is 15 m. The acceleration of gravity is 9.8 m/s 2 .Starting from rest at a height equal to the radius of the circular track, a block of mass 24 kg slides down a quarter circular track under the influence of gravity with friction present (of coefficient µ). The radius of the track is 15 m. The acceleration of gravity is 9.8 m/s 2 . If the kinetic energy of the block at the
bottom of the track is 3900 J, what is the
work done against friction?
Answer in units of J.
Answer:
The work done against friction is 372 joules
Explanation:
It is given that,
Mass of block, m = 24 kg
Radius of the track, r = 15 m
Acceleration due to gravity, [tex]a=9.8\ m/s^2[/tex]
If the kinetic energy of the block at the bottom of the track is, 3900 J
Let P is the work done against friction. It is given by :
[tex]P=mgh[/tex]
Here, h = r
[tex]P=24\ kg\times 9.8\ m/s^2\times 15\ m[/tex]
P = 3528 J
Since it ends up with 3900 J, the work done is given by or the lost in energy will be :
W = 3900 - 3528
W = 372 joules
So, the work done against friction is 372 joules. Hence, this is the required solution.
How much work did the movers do (horizontally) pushing a 41.0-kgkg crate 10.6 mm across a rough floor without acceleration, if the effective coefficient of friction was 0.60?
Final answer:
The work done by movers to push a 41.0 kg crate across a rough floor for 10.6 meters against a coefficient of friction of 0.60, with no acceleration, is 2547.816 joules.
Explanation:
The student is asking about the amount of work done by movers in pushing a 41.0 kg crate across a rough floor where there is friction but without acceleration. The coefficient of friction is given as 0.60. To solve this problem, we use the formula:
Work done (W) = Force (F) x Distance (d)
Since the crate is moved horizontally with no acceleration, the force applied by the movers is equal to the frictional force, which is given by:
F = μ x Normal force (N)
The normal force is equal to the weight of the crate, which is mass (m) times the acceleration due to gravity (g), N = m x g. Therefore:
F = μ x m x g
Now, we know the mass (m=41.0 kg), acceleration due to gravity (g ≈ 9.8 m/s²), coefficient of friction (μ = 0.60), and distance (d = 10.6 m). Plugging these values in, we get:
F = 0.60 x 41.0 kg x 9.8 m/s² = 240.36 N
W = 240.36 N x 10.6 m = 2547.816 J
Therefore, the work done by the movers is 2547.816 joules.
If you use a horizontal force of 33.0 N to slide a 11.0 kg wooden crate across a floor at a constant velocity, what is the coefficient of kinetic friction between the crate and the floor?
Answer:
μ= 0.3
Explanation:
Given that
F= 33 N
m = 11 kg
Given that crate is moving with constant velocity is means that acceleration of the crate is zero.If acceleration of the system is zero then the total force on the system will be balance.
Therefore
F= Friction force
F= μ m g
μ=Coefficient of friction
33 = μ x 10 x 11 ( take g= 10 m/s²)
3 = 10 μ
μ= 0.3
Therefore coefficient of friction will be 0.3 .
Electrically charged sunspot gases which escape the sun's chromosphere and enter the earth's atmosphere near the magnetic north pole cause the _______.
Answer:
Northern Lights ( Aurora Borealis)
Explanation:
When the electricaly charged sunspot gases (they are named a solar wind) escape the sun's chromosphere and penetrates from the earth magnetic sheild which is called earth's magnetosphere then upon there interaction with atoms and molecules of our atmosphere there are little bursts of photons in the form of light which made up these northern lights.
physical science!!!!!!helpppp
Answer:
Option B
10.36 m/s
Explanation:
Using the first given equation, then velocity=distance/time
Since distance is provided as 200 m and time, t is 19.3 seconds then substituting these figures yields
v=200/19.3=10.3626943
Rounding off to 2 decimal places, then
v=10.36 m/s
The velocity of the source is positive if the source is ______________. Note that this equation may not use the sign convention you are accustomed to. Think about the physical situation before answering.
Answer:
source is travelling away from the listener.
Explanation:
we know that
[tex]f_l=f_s\frac{v+v_L}{v+v_s}[/tex]
v= speed of sound
v_L= speed of listener
v_s=speed of the source
Let us consider the case when vL is zero.
We can see from equation that if we put +ve value for vs , then fL turns out to be less than fs.
(As denominator becomes greater than numerator part in right side term)
Frequency as heard by listener is less than the frequency of source when source is moving away from listener.
Therefore in this equation velocity of source is positive if the source is travelling away from the listener.
Final answer:
The velocity of the source is positive if the source is moving in the direction of the chosen reference or coordinate system. In physics, velocity is a vector quantity that not only indicates the speed of movement but also the direction of the object.
Explanation:
The velocity of a source is positive if it is moving in the same direction as the chosen positive reference direction in a coordinate system.
Therefore, a positive velocity indicates that an object is moving in the same direction that has been defined as positive in the coordinate system. Often, the positive direction is arbitrarily chosen, such as to the right or upwards on a graph. Conversely, a negative velocity indicates movement in the opposite direction of the chosen positive direction.
Additionally, if we discuss displacement, the final displacement being positive indicates that the object's position changed in the direction of the positive axis as well. The sign of velocity affects how we perceive acceleration too; for instance, if an object has a positive velocity and is speeding up, its acceleration is also positive. This means that the acceleration is in the same direction as the motion.
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1700 kg, which is required to travel upward 45 m in 2.1 min, starting and ending at rest. The elevator's counterweight has a mass of only 840 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable?
Answer:
3,010 W
Explanation:
mass of elevator (Me) = 1700 kg
mass of counter weight (Mc) = 840 kg
travel distance (d) = 45 m
time (t) = 2.1 min = 126 s
What average power is required of the force the motor exerts on the cab via the cable?
from Newtons second law of motion
force exerted by the elevator motor + force exerted by the elevator counter weight = force exerted by the elevator cab weight
therefore
force exerted by the elevator motor = force exerted by the elevator counter weight - force exerted by the elevator cab weight
force exerted by the elevator motor (Fm) = (Me x g) - (Mc x g)
force exerted by the elevator motor (Fm) = (1700 x 9.8) - (840 x 9.8)
force exerted by the elevator motor (Fm) = 8428 N
average power exerted by the motor = Fm x speed
where speed = distance / time
average power exerted by the motor = Fm x (distance / time)
average power exerted by the motor = 8428 x (45/126) = 3,010 W
Approximately how far is the sun from the center of the galaxy?
Answer:
About 8 kpc
Explanation:
The milky way galaxy is the galaxy we live in. Its composed of the solar system, billion stars, gas, dust and dark matter.
At its center it contains a super massive black hole called Sagittarius. This object is millions of times as massive as the sun.
The sun is about 8 kpc to the center of the milky way galaxy, this is about 26,000 light years away.
1000 parsecs distance is approximately 3262 light years.
A light year is the distance light can travel in a period of 1 year.
An Atwood machine is constructed using a hoop with spokes of negligible mass. The 2.5 kg mass of the pulley is concentrated on its rim, which is a distance 20.3 cm from the axle. The mass on the right is 1.33 kg and on the left is 1.78 kg. 3.7 m 2.5 kg 20.3 cm ω 1.78 kg 1.33 kg What is the magnitude of the linear acceleration of the hanging masses? The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s 2 .
Final answer:
The magnitude of the linear acceleration of the hanging masses in an Atwood machine can be calculated using the formula: a = (m2 - m1)g / (m1 + m2). The given masses are 1.33 kg on the right and 1.78 kg on the left. Plugging in these values, the magnitude of the acceleration is 1.3816 m/s^2.
Explanation:
In an Atwood machine, the magnitude of the linear acceleration of the hanging masses can be calculated using the formula:
a = (m2 - m1)g / (m1 + m2)
Where:
a is the magnitude of the linear acceleration
m1 is the mass on the left (1.78 kg)
m2 is the mass on the right (1.33 kg)
g is the acceleration due to gravity (9.8 m/s^2)
Plugging in the given values, we get:
a = (1.33 kg - 1.78 kg) * 9.8 m/s^2 / (1.78 kg + 1.33 kg)
a = -0.44 kg * 9.8 m/s^2 / 3.11 kg
a = -1.3816 m/s^2
Since the question asks for the magnitude of the acceleration, we take the absolute value:
a = 1.3816 m/s^2
Assessing and monitoring your fluid levels will help you optimize your car's _______.
A. fuel mileage and longevity
B. appearance and attractiveness
C. traction and weight distribution
Answer:
A. fuel mileage and longevity
Explanation:
For a person purchasing a car, car longevity is one of the main concern. They are also interested in many things such as maximum mileage and service life.
By properly monitoring and assessing few measures one can maintain the efficiency and longevity of the car. One such thing is by monitoring the liquid levels of the car. Certain liquids like the coolant or radiator water level should be well maintain in proper level in order to run the car economically.
Thus by doing this, one can optimize the car's longevity and the fuel mileage.
Hence the correct option is (A).
Final answer:
Monitoring fluid levels can optimize a car's fuel mileage and longevity. Hybrid cars are noted for their fuel efficiency, while vehicle weight and aerodynamic design also play roles in gas mileage. Efficient driving habits and vehicle technology contribute to both cost savings and environmental responsibility.
Explanation:
Assessing and monitoring your fluid levels is important for maintaining your vehicle and optimizing its fuel mileage and longevity. Proper fluid levels ensure that your car operates efficiently, which can lead to improved fuel efficiency, thus making the vehicle more cost-efficient and environmentally responsible. Option A
For instance, maintaining the correct level of engine oil can reduce friction in the engine, which can prevent excessive fuel consumption. Furthermore, ensuring proper coolant levels can help manage the vehicle's temperature, preventing overheating that might otherwise lead to engine damage and reduce fuel efficiency.
In addition to regular maintenance, driving behaviors such as adhering to speed limits and accelerating smoothly also contribute to fuel economy, as indicated by the feedback from eco-driving aids like the one in the Ford Fusion that displays a plant with leaves when driving efficiently.
Studies have shown that hybrid cars are not only reliable but also have a significant advantage in terms of fuel efficiency over conventional cars. A Toyota Prius, for example, gets notable gas mileage, boasting 48 miles per gallon on the highway and 51 mpg in the city, while a Ford Fusion hybrid gets 47 mpg in both city and country conditions. These hybrid vehicles incorporate technology that enhances their overall fuel efficiency, providing cost savings over the long term and contributing positively to environmental sustainability.
It's also worth noting that the weight of a vehicle affects its fuel economy. Heavier vehicles typically consume more fuel. Therefore, car manufacturers aim to reduce the weight of cars to improve their miles per gallon. Such considerations also extend to the design of the cars. Aerodynamic shaping can reduce drag force, further enhancing a car's gas mileage. Lastly, road wear and tear incurred by heavy vehicles suggests a deeper relationship between weight distribution, axle weight, and the environmental impact of driving.
Why do scientists often take several measurements of the same object, average them together, and use the average value as the measurement?
Answer:
To minimize the practical errors and improve the accuracy.
Explanation:
Scientists take several measurements and use the average of all the measured values to minimize the practical errors due to unavoidable circumstances and be close to the true value.True value is the actual value of a measured parameter without any error, it is the value which is proposed in the design of a certain object.Variations may occur in the measurement due to wear and tear, dust and air pressure. It is almost impossible to create ideal surrounding for the measurement procedure.Adding gallium, boron, or indium to pure silicon or germanium will create a material with an excess of ?
Answer:
Adding gallium, boron, or indium to pure silicon or germanium will create a material with an excess of holes which is called a p-type material.
Explanation:
gallium, boron or indium are elements with three valency electron, and they are called Acceptor impurities. When acceptor impurities are added to pure silicon, it is called dopping
dopping: This is the process by which impurities is added to semi conductors in order to alter its electrical conductivity. The impurities is called dopants.
Adding gallium, boron, or indium to pure silicon or germanium will create a material with an excess of holes which is called a p-type material.
Answer: the excess material created is called "Hole".
Explanation: When the semiconductor such as silicon or germanium with four electrons in the outermost shell known as valence electron is added to either of electrons from indium,gallium or boron which has three valency electrons, a hole is created.
A hole which has positive charge is caused as a result of the movement of valence electrons from an atom to another atom.
A hole brings about conduction in semiconductor materials, (i.e when the free electrons with negative charge and holes with positive charge move in opposite direction in the semiconductor, conduction takes place).
Which of the following supports the claim that the atom is like a solid positive cookie with negative electrons embedded within it? (This model is known as the Plum Pudding Model of the atom, and is illustrated to the right).
a. Law of Constant Composition, Law of Multiple Proportions, Law of Conservation of Mass Alpha particles are scattered at a variety of angles (over 90 degrees) when bombarded at gold foil.
b. When light from hydrogen emissions passes through a diffracting grating, there are distinct bands of color.
c. The Cathode Ray Tube experiment, in which the ray was attracted to the south pole of the magnet.
Answer:
a. Law of Constant Composition, Law of Multiple Proportions, Law of Conservation of Mass Alpha particles are scattered at a variety of angles (over 90 degrees) when bombarded at gold foil.
Explanation:
Which of the following supports the claim that the atom is like a solid positive cookie with negative electrons embedded within it? (This model is known as the Plum Pudding Model of the atom, and is illustrated to the right).
a. Law of Constant Composition, Law of Multiple Proportions, Law of Conservation of Mass Alpha particles are scattered at a variety of angles (over 90 degrees) when bombarded at gold foil.
b. When light from hydrogen emissions passes through a diffracting grating, there are distinct bands of color.
c. The Cathode Ray Tube experiment, in which the ray was attracted to the south pole of the magnet.
the plumbudding model of the atom was postulated by JJ Thompson and plum pudding model. . ... Thomson had discovered that atoms are composite objects, made of pieces with positive and negative charge, and that the negatively charged electrons within the atom were very small compared to the entire atom.
so a. correctly typifies the thompson model of the atom
Final answer:
Option c, the Cathode Ray Tube experiment, supports the claim that the atom is like a solid positive cookie with negative electrons embedded within it.
Explanation:
The correct option that supports the claim that the atom is like a solid positive cookie with negative electrons embedded within it is option c. The Cathode Ray Tube experiment, in which the ray was attracted to the south pole of the magnet, is consistent with the Plum Pudding Model of the atom. This model describes atoms as having a diffuse positive charge with embedded electrons.
Which of the following is an effect of an ankle sprain? A. A decrease in the neural control to muscles that stabilize the patella B. Decreased neural control to stabilizing muscles of the core of the ankle C. A decrease in the neural control to the gluteus medius and gluteus maximus muscles D. Decreased neural control of the rotator cuff muscles
Answer:
C. A decrease in the neural control to the gluteus medius and gluteus maximus muscles
Explanation:
An ankle sprain is an injury that is caused by the twisting, rolling or turning the ankle in awkward manner. It can tear the ligaments of the bone muscles that helps to hold together the ankle bones.
When we get an ankle sprain, the neural control of the gluteus medius as well as the gluteus maximus muscles decreases. Thereby limiting the control of the lower extremities during any functional activities.
Hence the correct option is (C).
Which of the following are generally characteristic of carbon/graphite fiber composites?1. Flexibility.2. stiffness.3. high compressive strength.4. Corrosive effect in contact with aluminum.5. Ability to conduct electricity.A. 1 and 3B. 2,3 and 4.C. 1,3, and 5.
Answer:
option B
Explanation:
The correct answer is option B
Carbon/graphite fiber composite is a polymer composite which is five times stronger than the mild steel and five-time more lighter than it.
This material has a high-temperature resistant quality, it works as a high insulator. The material does not melt at high temperatures. And the material is also corrosive resistant but has a corrosive effect when contact with aluminum.
Hence, we can say that Carbon/graphite fiber has high stiffness, high compressive strength, and have a corrosive effect in contact with aluminum.
Final answer:
Carbon/graphite fiber composites are known for their stiffness, high compressive strength, and ability to conduct electricity, characteristics derived from the structure of graphite itself.
Explanation:
The characteristics of carbon/graphite fiber composites are influenced by the structure of graphite itself. Graphite is structured in layers of carbon atoms connected in a hexagonal lattice. Each carbon atom in graphite forms three σ bonds with neighboring carbon atoms using sp² hybridized orbitals, and the fourth unhybridized p orbital participates in bonding, spreading the electron density over the entire layer, which allows the material to conduct electricity.
Due to the weak van der Waals forces holding the layers together, graphite is soft and has lubricating properties, allowing the layers to slide over each other easily. This structural characteristic of graphite is crucial in forming composites that often possess properties such as stiffness, high compressive strength, and the ability to conduct electricity.
An object is thrown straight up with a velocity, in ft/s, given by v(t)= -32t + 83, where t is in seconds, from a height of 46 feet.
a) What is the object's initial velocity?
b) What is the object's maximum velocity?
c) What is the object's maximum displacement?
d) When does the maximum displacement occur?
e) When is the object's displacement 0?
f) What is the object's maximum height?
Explanation:
We have velocity
v(t)= -32t + 83
Integrating
s(t) = -16t²+83t+C
At t = 0 displacement is 46 feet
46 = -16 x 0²+83 x 0+C
C = 46 feet
So displacement is
s(t) = -16t²+83t+46
a) Initial velocity is
v(0)= -32 x 0 + 83 = 83 ft/s
Initial velocity = 83 ft/s
b) Maximum velocity is when the object reaches ground, that is s(t) = 0 ft
Substituting
0 = -16t²+83t+46
t = 5.70 seconds
Substituting in velocity equation
v(t)= -32 x 5.70 + 83 = -99.4 ft/s
Object's maximum speed = 99.4 ft/s
c) Maximum displacement is when the velocity is zero
That is
-32t + 83 = 0
t = 2.59 s
Substituting in displacement equation
s(2.59) = -16 x 2.59²+83 x 2.59+46 = 153.64 ft
Object's maximum displacement = 153.64 ft
d) Maximum displacement occur at t = 2.59 seconds.
e) Refer part b
The displacement is zero when t = 5.70 seconds
f) Same as option d
Object's maximum height = 153.64 ft
Answer:
The initial velocity is 83 ft/s.
The maximum velocity of object is -82.76 ft/s.
The maximum displacement is 107.64 ft.
Time for maximum displacement is 2.59 s.
The object's displacement is zero at 5.18 s.
The maximum height of object is, 107.64 ft.
Explanation:
Given data:
Equation for the velocity is, [tex]v(t)=-32t+83[/tex].
Height is, [tex]H'=46\;\rm feet[/tex].
(a)
At initial, the time function is zero. Which means, t = 0.
Then, initial velocity is:
[tex]v(t=0)=-32(0)+83\\v(t=0)= 83\;\rm ft/s[/tex]
Thus, the initial velocity is 83 ft/s.
(b)
The maximum velocity of object is at ground. Then, equation for maximum distance covered is obtained as,
[tex]v(t)=\frac{dH}{dt} \\dH=\int\limits^H_0 {v(t)} \, dt \\dH=\int\limits^H_0 {(-32t+83)} \, dt[/tex]
Integrating as,
[tex]H =-16t^2+83t[/tex]
Maximum velocity is at ground, hence H=0. Solving as,
[tex]0 =-16t^2+83t\\16t=83\\t=5.18 \;\rm s[/tex]
Now, maximum velocity is,
[tex]v(t=5.18)=-32(5.18)+83\\v(t=5.18)=-82.76 \;\rm ft/s[/tex]
Thus, maximum velocity of object is -82.76 ft/s.
(c)
The maximum displacement will be at corresponding to zero velocity. Then,
[tex]v(t)=-32t+83\\0=-32t+83\\t=2.59 \;\rm s[/tex]
Then, maximum displacement is,
[tex]H =-16(2.59^2)+83(2.59)\\H = 107.64\;\rm ft[/tex]
Thus, maximum displacement is 107.64 ft.
(d)
The maximum displacement occurs at zero velocity. And, time is,
[tex]v(t)=-32t+83\\0=-32t+83\\t=2.59 \;\rm s[/tex]
Thus, time for maximum displacement is 2.59 s.
(e)
The object displacement is zero when it reaches back to the ground. At ground, H=0. Which means time is,
[tex]0 =-16t^2+83t\\\\16t=83\\t=5.18 \;\rm s[/tex]
Thus, object's displacement is zero at 5.18 s.
(f)
The maximum height of object is equal to maximum displacement. Thus, maximum height of object is, 107.64 ft.
For more details, refer to link:
https://brainly.com/question/20423083?referrer=searchResults
What situation primarily involves heat transfer by convection?
Answer:
Heating of a fluid bulk from the bottom.
Explanation:
Whenever a fluid bulk is heated form the lower layers then due to the variation of the density of the fluid at different temperature we observe the movement of molecules leading to convection.
When the lowest level of the fluid is heated it gains temperature and the molecular bulk expands on heating and its density becomes low with respect to the bulk fluid around it and hence it flows upwards to the top most layer being lighter in weight and the lowest layer is occupied by the subsequent colder and denser layer.Then again the lowest layer is heated and the process continues forming a cycle heating through the bulk transfer of fluid layers called convention.The situation that primarily involves heat transfer by convection is when a fluid (liquid or gas) moves and carries heat energy along with it.
Convection is a mode of heat transfer that occurs through the movement of a fluid. It involves the transfer of heat by the actual movement or circulation of the fluid particles. Convection typically occurs in liquids and gases, where the particles can freely move.
Similarly, natural convection occurs when heated air or fluid rises due to its lower density compared to the surrounding cooler air or fluid. This can be observed, for instance, in the circulation of air near a hot stove or the movement of hot water in a boiling pot.
Convection is also prevalent in weather phenomena such as ocean currents and winds, where the movement of fluids carries heat energy from one region to another.
Overall, situations that involve the transfer of heat through the movement of fluids, whether natural or forced convection, primarily involve heat transfer by convection.
To know more about heat transfer by convection:
https://brainly.com/question/276731
#SPJ6
pulse train with a frequency of 1 MHz is counted using a modulo-1024 ripple-counter built with J-K flip flops. For proper operation of the counter, the maximum permissible propagation delay per flip flop stage is ______ n sec.
Answer:
The maximum permissible propagation delay per flip flop stage is 100 n sec
Explanation:
1024 ripple counter has 10 J-K flip flops(210 = 1024).
So the total delay will be 10×x where x is the delay of each J-K flip flops.
The period of the clock pulse is 1× 10⁻⁶ s.
Now
10x <= 10⁻⁶ s
x <= 100 ns
x= 100 ns for prpoer operation.
pulse train with a frequency of 1 MHz is counted using a modulo-1024 ripple-counter built with J-K flip flops. For proper operation of the counter, the maximum permissible propagation delay per flip flop stage is 100 n sec.
Feces is usually about 40 percent water and 60 percent solid matter. Reducing the water content to 20 percent would most likely result in
Answer:
Constipation
Explanation:
An organism's bowel movement depends on the amount of water it has consumed. If the organism has not consumed enough water then the stool becomes hard and dry.
This makes it difficult for the organism to pass the stool. This condition is known as constipation.
Hence, here if the water content is reduced to 20 percent then this would likely result in constipation.
A ball is thrown horizontally from the top of a building 30.2 m high. The ball strikes the ground at a point 94.7 m from the base of the building. The acceleration of gravity is 9.8 m/s 2 . Find the time the ball is in motion. Answer in units of s. 015 (part 2 of 4) 10.0 points Find the initial velocity of the ball. Answer in units of m/s. 016 (part 3 of 4) 10.0 points Find the x component of its velocity just before it strikes the ground. Answer in units of m/s. 017 (part 4 of 4) 10.0 points Find the y component of its velocity just before it strikes the ground. Answer in units of m/s.
Answer:
1) The ball is in motion for 2.48 seconds.2) Initial velocity of ball is 38.16 m/s 3) x component of velocity before hitting the ground is 38.16 m/s 4) y component of velocity before hitting the ground is 24.33 m/sExplanation:
1) Consider the vertical motion of ball
Displacement, s = 30.2 m
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Substituting in s = ut + 0.5 at²
30.2 = 0 x t + 0.5 x 9.81 x t²
t = 2.48 s
The ball is in motion for 6.16 seconds.
2) Consider the horizontal motion of ball
Displacement, s = 94.7 m
Time, t = 2.48 s
Acceleration, a = 0 m/s²
Substituting in s = ut + 0.5 at²
94.7 = u x 2.48 + 0.5 x 0 x 2.48²
u = 38.16 m/s
Initial velocity of ball = 38.16 m/s
3) x component of velocity will not change since acceleration is zero along x direction.
x component of velocity before hitting the ground = 38.16 m/s
4) Consider the vertical motion of ball
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 2.48 s
Substituting in v = u + at
v = 0 + 9.81 x 2.48
v = 24.33 m/s
y component of velocity before hitting the ground = 24.33 m/s
Final answer:
The time the ball is in motion is 2.18 seconds. The initial velocity of the ball is 43.47 m/s. The x component of the velocity just before it strikes the ground is 43.47 m/s and the y component of the velocity is 21.36 m/s.
Explanation:
To find the time the ball is in motion, we can use the equation h = 0.5 * g * t^2, where h is the height of the building, g is the acceleration due to gravity, and t is the time. Rearranging the equation, we get t = sqrt(2h/g). Substituting the given values, the time the ball is in motion is sqrt(2 * 30.2 / 9.8) = 2.18 seconds.
The initial velocity of the ball can be found using the equation v = d / t, where v is the velocity, d is the horizontal distance, and t is the time. Rearranging the equation, we get v = d / t. Substituting the given values, the initial velocity of the ball is 94.7 / 2.18 = 43.47 m/s.
The x component of the velocity just before the ball strikes the ground is equal to the initial velocity, since there is no horizontal acceleration. Therefore, the x component of the velocity is 43.47 m/s.
The y component of the velocity just before the ball strikes the ground can be found using the equation v = u + gt, where v is the final velocity, u is the initial velocity, g is the acceleration due to gravity, and t is the time. Rearranging the equation, we get v - u = gt. Substituting the given values, the y component of the velocity is 9.8 * 2.18 = 21.36 m/s.
The world's fastest humans can reach speeds of about 11 m/s.In order to increase his gravitational potential energy by an amount equal to his kinetic energy at full speed, how high would such a sprinter need to climb?
Answer:
The sprinter need to climb 6.17 m
Explanation:
From the question,
Ep = Ek...................... Equation 1
Where Ep = potential energy, Ek = kinetic energy.
therefore,
mgh = 1/2mv².................... Equation 2
Where m = mass of the human, v = speed, h = height, g = acceleration due to gravity.
making h the subject of formula in equation 2
h = 1/2v²/g...................... Equation 3
Given: v = 11 m/s
Constant: g = 9.8 m/s²
Substituting these values into equation 3,
h = 1/2(11²)/9.8
h = 6.17 m.
Therefore the sprinter need to climb 6.17 m
The Mesozoic Era is a time in Earth history when ________.
A. the first abundant shelly organisms appeared in the fossil record
B. Earth’s interior was so hot that a solid outer crust, if present, was likely being extensively remelted
C. stable continental interiors, termed cratons, first formed
D. the dinosaurs appeared and came to dominate large-scale terrestrial life
Answer:
D. the dinosaurs appeared and came to dominate large-scale terrestrial life
Explanation:
The Mesozoic Era is a time in Earth history when
D. the dinosaurs appeared and came to dominate large-scale terrestrial life
The Mesozoic Era is the dinosaur age and lasted from approximately 250 to 65 million years ago for nearly 180 million years. This era includes three well-known periods called the periods of Triassic, Jurassic, and Cretaceous. A mass extinction marked the Mesozoic Era's beginning and end.
One object is fired at an angle of ten degrees above the horizontal. A second object is fired at an angle of ten degrees below the horizontal, and a third is fired in an exactly horizontal direction. All three are fired at the same time, but with different (and nonzero) speeds. Neglect air resistance and assume that the objects are fired over a perfectly level plain. Which of the objects strikes the ground first?
Answer:
The fired object at an angle of ten degrees below the horizontal
Explanation:
The second object strikes the ground first because independently of the magnitude of the speeds, this object has a speed component in the direction toward the floor allows it to reach the ground faster than the other objects.
Then the answer is:
The fired object at an angle of ten degrees below the horizontal
A student was producing 75 watts of power while applying a constant force of 225 newtons to slide a box of books 2.0 meters across the floor. How long did it take the student to slide the box of books?
Answer:
time taken = 6 secs
Explanation:
Power (P) = Force(F) * displacement(d)/ TIME (t)
75= 225 * 2.0/t
t= 225*2/75
t= 6 sec
Two technicians are discussing the IAT sensor. Technician A says that the IAT sensor is more important to the operation of the engine (higher authority) than the ECT sensor. Technician B says that the PCM will add fuel if the IAT indicates that the incoming air temperature is cold. Who is right?
A. Technician A
B. Technician B
C. Both Technician and Technician B
D. Neither A nor B
Answer:
Technician B
Explanation:
Two technicians are discussing the IAT sensor. Technician A says that the IAT sensor is more important to the operation of the engine (higher authority) than the ECT sensor. Technician B says that the PCM will add fuel if the IAT indicates that the incoming air temperature is cold. Who is right?
ECT is the engine coolant temperature
The Intake Air Temperature sensor (IAT) records the temperature of the air entering the engine. The engine computer (PCM) estimates air density so it can balance air air/fuel mixture.PCM will add fuel if the IAT indicates that the incoming air temperature is cold
Sachin Tendulkar is a very famous batsman. He has curly hair and is short in height. His wife is a doctor. He has 2 children. Which of these is MOST LIKELY TO BE TRUE about his children? A. They may marry doctors B. They may have 2 children C. They may be short in height D. They may become famous batsmen
Answer:
C) As Sachin Tendulkar is short in height himself, these genes of short height may get transferred in to his children. Most likely.
Explanation:
All the above options except one cannot be genetically determined.
A) This option is absolutely absurd because how can Sachin Tendulkar's information determine who is children are gonna marry
B)It cannot be determined.
C) As Sachin Tendulkar is short in height himself, these genes of short height may get transferred in to his children. Most likely.
D) Sachin Tendulkar is a famous batsman that does not mean his children also have to be famous batsmen
in the northern hemisphere the magnetic compass will normally indicate a turn toward the west.
Answer:
in the northern hemisphere the magnetic compass will normally indicate a turn toward the west if "A right turn is entered from a North Heading"
Explanation:
The face towards which the magnetic needle aligns are north and south magnetic poles. The magnetic compass does not work in southern hemisphere, because of the fact opposite poles attract. Exactly while turning right due to the opposite force the magnetic needle will deviate. Magnetic deviations do occur because of the presence of magnetized iron in the ship and also in aircraft. The magnetic north is not the actual or the exact north pole.
The force on a wire carrying 8.75 A is a maximum of 1.28 N when placed between the pole faces of a magnet
If the pole faces are 55.5 cm in diameter, what is the approximate strength of the magnetic field?
The force on a wire carrying [tex]8.75\ A[/tex] is a maximum of [tex]1.28\ N[/tex] when placed between the pole faces of a magnet. The strength of the magnetic field is [tex]0.207\ T[/tex].
The force (F) experienced by a current-carrying wire in a magnetic field is given by the formula:
Force (F) = Magnetic Field (B) × Current (I) × Length (L) × sin(θ)
Given data:
Force [tex](F) = 1.28\ N[/tex]
Current[tex](I) = 8.75\ A[/tex]
Length [tex](L) = 55.5\ cm[/tex]
To find the magnetic field strength (B).
Assuming the wire is placed perpendicular to the magnetic field (θ = 90°), sin(90°) = 1, and the equation simplifies to:
[tex]B = F / (I \times L)[/tex]
Convert the length from centimeters to meters (1 cm = 0.01 m):
[tex]Length (L) = 55.5\ cm \times 0.01\ m/cm \\L = 0.555\ m[/tex]
Now, plug in the values and calculate B:
[tex]B = 1.28 / (8.75 \times 0.555)[/tex]
Calculating gives approximately:
[tex]B = 0.207\ T[/tex]
Therefore, the strength of the magnetic field is 0.207 teslas.
To know more about the magnetic field:
https://brainly.com/question/14848188
#SPJ12
Final answer:
To find the strength of the magnetic field, use the formula for magnetic force on a current-carrying wire with the given values to calculate the approximate field strength. The magnetic field's approximate strength is 4.85 T.
Explanation:
The strength of the magnetic field can be calculated using the formula for magnetic force on a current-carrying wire:
B = F / (I * L * sinθ),
where B is the magnetic field strength, F is the force on the wire, I is the current, L is the length of the wire, and θ is the angle between the wire and the magnetic field.
Substitute the given values: I = 8.75 A, F = 1.28 N, L = 55.5 cm = 0.555 m, and sinθ = 1 (as the wire is perpendicular to the magnetic field).
Calculating, we find that the approximate strength of the magnetic field is around 4.85 T.