look at the image please helppp
Answer:
Option A. one rectangle and two triangles
Option E. one triangle and one trapezoid
Step-by-step explanation:
step 1
we know that
The area of the polygon can be decomposed into one rectangle and two triangles
see the attached figure N 1
therefore
Te area of the composite figure is equal to the area of one rectangle plus the area of two triangles
so
[tex]A=(8)(4)+2[\frac{1}{2}((8)(4)]=32+32=64\ yd^2[/tex]
step 2
we know that
The area of the polygon can be decomposed into one triangle and one trapezoid
see the attached figure N 2
therefore
Te area of the composite figure is equal to the area of one triangle plus the area of one trapezoid
so
[tex]A=\frac{1}{2}(8)(4)+\frac{1}{2}((4+8)(8)=16+48=64\ yd^2[/tex]
A car drove 24 miles in 0.2 hours. How fast is the car going in miles per hour?
Answer:
120 mph
Step-by-step explanation:
To find miles per hour, divide miles by hours. ("Per" essentially means "divided by".)
(24 miles)/(0.2 hour) = 24/0.2 miles/hour = 120 miles/hour
While Brendan is vacationing with his family at the cabin, they take a motorboat on the river. The motorboat travels
18 miles per hour in still water.
1. Let w represent the speed of the river current in miles per hour. Write an expression for how fast the
motorboat is able to go downstream (with the current) Write another expression for how fast the motorboat is
able to go upstream (against the current).
2. The motorboat travels 49 miles upstream in the same time it takes to travel 77 miles downstream. What is the
speed of the current w? Use the Elimination Method to solve.
Part 1: The speed of the boat traveling downstream is [tex](18+w)[/tex] miles per hr.
The speed of the boat traveling upstream is [tex](18-w)[/tex] miles per hr.
Part 2: The speed of the current is 4 miles per hour.
Explanation:
Part (1): The motorboat travels 18 miles per hour in still.
Let w represents the speed of the current.
When the boat travels downstream, the speed of the current will get added to the speed of the boat.
Thus, the expression can be written as [tex](18+w)[/tex] miles per hr
Hence, the speed of the boat traveling downstream is [tex](18+w)[/tex] miles per hr.
When the boat travels upstream, the speed of the current will get subtracted to the speed of the boat.
Thus, the expression can be written as [tex](18-w)[/tex] miles per hr.
Hence, the speed of the boat traveling upstream is [tex](18-w)[/tex] miles per hr.
Part (2): The boat travels 49 miles upstream in the same time it takes to travel 77 miles downstream.
The distance formula is given by [tex]distance $=$ speed $\times$ time[/tex]
Substituting, we have,
[tex]49=(18-w)t\\49=18t-wt[/tex] ---------------(1)
[tex]77=(18+w)t\\77=18t+wt[/tex] ---------------(2)
Solving using elimination method,
[tex]49=18 t-w t\\77=18 t+w t\\-------\\126=36t[/tex]
Dividing both sides by 36, we have,
[tex]t=3.5[/tex]
Substituting [tex]t=3.5[/tex] in [tex]$49=18 t-w t$[/tex], we get,
[tex]49=18(3.5)-w (3.5)\\[/tex]
[tex]49=63-3.5w\\[/tex]
[tex]-14=-3.5w\\[/tex]
[tex]4=w[/tex]
Thus, the speed of the current is [tex]w=4[/tex] miles per hour.
Final answer:
The expression for the speed of the motorboat downstream is (18 + w) miles per hour. The expression for the speed of the motorboat upstream is (18 - w) miles per hour. To solve for the speed of the current, a system of equations can be set up and solved using the Elimination Method.
Explanation:
1. When the motorboat is traveling downstream (with the current), the speed of the motorboat will be the sum of its speed in still water and the speed of the river current. So the expression for the speed of the motorboat downstream is: (18 + w) miles per hour.
When the motorboat is traveling upstream (against the current), the speed of the motorboat will be the difference between its speed in still water and the speed of the river current. So the expression for the speed of the motorboat upstream is: (18 - w) miles per hour.
2. To find the speed of the current, we can set up a system of equations. Let t represent the time taken for both the upstream and downstream trips. The distance traveled upstream is 49 miles and the distance traveled downstream is 77 miles. Using the formula Distance = Speed x Time, we can write the following equations:
(18 + w) * t = 77
(18 - w) * t = 49
We can solve this system of equations using the Elimination Method. First, multiply the first equation by (18 - w), and multiply the second equation by (18 + w) to eliminate the variable w:
[(18 + w) * t] * (18 - w) = [(18 - w) * t] * (18 + w)
Simplify both sides of the equation:
(18 + w)(18 - w)t = (18 - w)(18 + w)t
Expand:
(18² - w²)t = (18² - w²)t
Cancel out the like terms:
324 - w² = 324 - w²
This equation is true for any value of w. Therefore, there are infinitely many possible values for the speed of the current w. The specific value of w would depend on the given values of t and the distance.
Given the scale drawing of a one bedroom apartment, what is the actual length of the apartment from the study to kitchen?
Answer: 30 ft
Step-by-step explanation: bc 1/2 inch = 3 feet combined length = 2 + 5= 5 inches therefore (5.0/0.5)(3)= 10(3)=30
Chose all of the terms that describe the set of lines.
OPTIONS: o(╥﹏╥)o
Transversal
Parallel lines
Perpendicular lines
Intersecting lines
Answer: intersecting
Step-by-step explanation:
they cross each other
How fast should the ant walk to go around the rectangle in 4 minutes?
The ant should walk__ inches per minute.
Question:
How fast should the ant walk to go around the rectangle in 4 minutes if the sides are 12 inches and 16 inches
Answer:
The ant should walk 14 inches per minute
Solution:
Given that,
Dimensions of rectangle are 12 inches and 16 inches
Find the perimeter of rectangle
Perimeter = 2(length + width)
Perimeter = 2(12 + 16)
Perimeter = 2(28) = 56
Thus perimeter of rectangle is 56 inches
Time taken = 4 minutes
We have to find the speed at which ant covers 56 inches in 4 minutes
The speed is given by formula:
[tex]speed = \frac{distance}{time}[/tex]
[tex]speed = \frac{56}{4} = 14[/tex]
Thus the ant should walk 14 inches per minute
There are 6 cookies in 1 bag. How many cookies are in 5 bags?
Answer:
30
Step-by-step explanation:
Ruby spends 1 1/4 hours a day practicing tye piano she practices 6 days a week how much time in all does ruby spend practicing the piano each weej
Use the Diagram of ABCD to find X?
Does anyone know this?
Answer:
x = 9
Step-by-step explanation:
x+3=2x-6
3=2x-x-6
9=x
The value of the x for the figure ABCD is 9.
What are quadrilaterals?A closed quadrilateral has four sides, four vertices, and four angles. It is a form of a polygon. In order to create it, four non-collinear points are joined. Quadrilaterals always have a total internal angle of 360 degrees.
Given the quadrilateral ABCD and opposite sides are parallel,
AD ║ BC and AB ║ CD
since the opposite sides of the quadrilateral are parallel so the quadrilateral is a parallelogram,
so AB = CD
AB = x + 3 and CD = 2x - 6
x + 3 = 2x - 6
2x - x = 3 + 6
x = 9
Hence the value of x is 9.
Learn more about quadrilaterals;
https://brainly.com/question/13805601
#SPJ2
look at the images please helppp
Let's begin with point A:
[tex]A(7,-4)[/tex]
So we need to find the coordinates of points D in order for ABCD to be a rectangle. So:
D can be found by reflecting A across the x axis:
So you just need to multiply the y-coordinate by -1, then:
[tex]D(x,y)=D(7,-1(-4))=D(7,4)[/tex]
Part 2:The length of AD can be found as the change in y from A to D:
[tex]\overline{AD}=4-(-4) \\ \\ \overline{AD}=8units[/tex]
Part 3.B can be found by reflecting A across the y-axisC can be found by rotating A 180 degrees about the originLearn more:Translation and reflection: https://brainly.com/question/12554274
#LearnWithBrainly
Jose has scored 632 points on his math tests so far this semester. To get an A for the semester, he must
score at least 726 points.
Part 1 out of 2
Enter an inequality to find the minimum number of points he must score on the remaining tests in
order to get an A. Let n represent the number of points Jose needs to score on the remaining tests.
The inequality is|
+n (select)
Next
Step-by-step explanation:
Jose need at least 94 more points in order to get an A on this semester
antarctica averages 2,400 meters in elevation. what is the average elevation of Antarctica in kilometers
Answer:
2.4 km
Step-by-step explanation:
The conversion factor is that 1 km = 1000 m. So to find km from m we need to divide the value in m by 1000:
2,400 ÷ 1000 = 2.4 km
Answer:
2.4 kilometers
Step-by-step explanation:
There are 1000 meters in 1 kilometer. So to convert from a smaller unit to a larger one you divide. So to calculate:
2400 m * [tex]\frac{1 km}{1000 m}[/tex] = 2.4 km
Due to financial difficulties the owner of 4 skateboard stores is going to close 2 of his stores. Based on the money earned at each store, which two stores should remain open?
A) Ben's Boards and Skateaway
B) Skateaway and Great Skates
C) Skateaway and Discount Sports
D) Discount Sports and Ben's Boards
Answer:
B
Step-by-step explanation:
Because, according to the graph, they are making the most sells.
find the difference and the next three terms -10 -20 -30
Answer:
- 40, - 50, - 60
Step-by-step explanation:
Note the common difference d between consecutive terms of the sequence.
- 20 - (- 10) = - 20 + 10 = - 10
- 30 - (- 20) = - 30 + 20 = - 10
Thus the difference d = - 10
To obtain a term in the sequence subtract 10 from the previous term
- 30 - 10 = - 40
- 40 - 10 = - 50
- 50 - 10 = - 60
The next 3 terms are - 40, - 50, - 60
At a holiday camp, the ratio of boys to girls is 3: 4 and the ratio of girls to adults is 5: 7
What is the ratio of children to adults at the camp?
The ratio of boys to girls (3:4) and girls to adults (5:7) leads to a combined ratio of children to adults at the holiday camp of 5:4 after aligning the ratios on the common term for girls and simplifying.
Explanation:To determine the ratio of children to adults at the holiday camp, we can use the given ratios:
Ratio of boys to girls: 3:4Ratio of girls to adults: 5:7First, express both ratios with a common term for girls to combine them accurately:
Since the ratio of girls to adults is 5:7, we can align this with the boys to girls ratio by multiplying the boys to girls ratio by 5 (the common term for girls). This gives us:
Ratio of boys to girls (multiplied by 5): 15:20Ratio of girls to adults: 20:28So, we have 15 boys and 20 girls for every 28 adults. The total number of children (boys and girls) is 15 + 20 = 35.
Therefore, the ratio of children to adults at the camp is 35:28, which simplifies to 5:4 after dividing both terms by 7.
[tex]5 \times 5[/tex]
Step-by-step explanation:
[tex]5 \times 5= 25[/tex]
Mr Smith class 1/3 were absent on Monday and Mrs. Brown class 2/5 were absent on Monday. If 4 students from each class were absent on Monday. How many students are in each class?
Answer:
Mr. Smiths class has 12 students and Mrs. Brown's class has 10 students.
Step-by-step explanation:
if 1/3 of the class is absent and that amount is four you would multiply 4 by 3 and get 12. If 2/5 of the class are missing and there 4 students first you would divide 4 by 2 and get 2, then you would take the 2 and multiply it by 5 and get 10.
Two supplementary angles have measures that are in the ratio of 5 to 7. Find the measure of the smaller angle
Measure of the smaller angle is 75°
Step-by-step explanation:
Step 1: Sum of supplementary angles is 180°. Given ratio of angles is 5:7.Let angles be 5x and 7x.
⇒ 5x + 7x = 180
⇒ 12x = 180
⇒ x = 15
Step 2: Calculate smaller angle which is 5x⇒5x = 5 [tex]\times[/tex] 15 = 75°
To find the measure of the smaller supplementary angle, when the ratio of the two angles is 5:7, you need to set up an equation with 5x and 7x as the angle measures. Solve this equation to find the value of 'x', and then use 'x' to calculate the measure of the smaller angle, which amounts to 75 degrees.
Explanation:In this mathematics problem, we know that two angles are supplementary if their measures add up to 180 degrees. If the ratio of the two supplementary angles is 5:7, we can set up an equation to solve for the unknowns.
Let 5x represent the measure of the smaller angle and 7x represent the measure of the larger angle. We know that the sum of these two angles should be 180 degrees, thus:
5x + 7x = 180
Combining like terms, we get:
12x = 180
Now, we can solve for 'x' by dividing both sides of the equation by 12:
x = 180 / 12, which equals 15
Now that we know the value of 'x', we can plug it back in to find the measures of the two angles. The smaller angle, which is 5x, is then:
5x = 5 * 15, which equals 75 degrees
So the measure of the smaller angle is 75 degrees.
Learn more about Supplementary Angles here:https://brainly.com/question/31741214
#SPJ3
Chandra's heart beats 1860 times during 15 min of running. While resting, Chandra records her heart beating 36 times in 30 seconds what is the difference between Chandra's heart rate while running vs. resting?
A. 56 beats/min
B. 52 beats/min
C. 1912 beats/min
D. 1788 beats/min
Answer:
B. 52 beats/min
Step-by-step explanation:
while resting her heart beats : 36×2 = 72 beats/min
while running her heart beats : 1 860÷15 = 124 beats/min
difference = 124-72 = 52 beats/min
:)
Answer:
B. 52 beats/min
Step-by-step explanation:
To find the answer you have to find the bpm of each time that Chandra recorded her heart rate. So when she recorded her heart rate when running, you simply divide 1850 by 15, and you should get 123.333 (repeating) I am assuming by the answers that we are rounding, so we are going to round that answer up. Next to find her heart rate while resting, you take her heart rate in 30 seconds, which is 36, and multiply it by 2, because it was her heart rate in half of the time that we are measuring it in. So when you multiply 36 by 2 you should get 72. The next step is to subtract 124 from 72. You answer is 52.
Simplify the algebraic expression 7x^2 + 6x - 9x - 6x^2 + 15
Answer: x^2-3x+15
Step-by-step explanation:
Combine the like terms.
x^2 -3x+15
Answer:
x2 – 3x + 15 is the correct answer.
Step-by-step explanation:
Which fractions are equivalent to 40%?
All of them except 8/100 because it results 0.08 or 8%.
The rest:
2/5 = 0.4 = 40%
8/20 = 0.4 = 40%
4/10 = 0.4 = 40%
16/40 = 0.4 = 40%
A radio station uses 1/6 of* its time for the O
news. In a 24 hour day, how many hours
are used for music & entertainment?
Answer:
4 hours is what they use
Step-by-step explanation:
If they use 1/6 of their time each day
A day = 24 hours
1/6 times of that day will be
1/6*24= 4 hours
Item 11
A salesperson receives a 3% commission on sales. The salesperson receives $180 in commission. What is the amount of sales?
Answer:
[tex]Amount\ of\ sales=\$ 6000[/tex]
Step-by-step explanation:
[tex]Let\ total\ sales=x\\\\Commission=3\%\ of\ total\ sale\\\\Commission=3\%\ of\ x\\\\It\ is\ given\ that\ salesperson\ gets\ \$ 180\ as\ commission.\\\\3\%\ of\ x=180\\\\\frac{3}{100}x=180\\\\x=\frac{180\times 100}{3}\\\\x=60\times 100\\\\x=6000\$\\\\Amount\ of\ sales=\$ 6000[/tex]
Consider the following system of equations made up of Lines 1 and 2.
Line 1: 6x - 7y = 25
Line 2: 2x + 9y = -3
Select all that are true about the system.
3
(0.3) is a solution for Line 1 only
(0, 0) is a solution for Line 2 only.
1-6. 1) is a solution for Line 2 only.
13.-1) is a solution to the system
(3.1) is a solution to the system
Option c: (-6,1) is a solution for Line 2 only
Option d: (3,-1) is a solution to the system
Explanation:
Option a: (0,3) is a solution for Line 1 only
Line 1 is [tex]6 x-7 y=25[/tex]
Let us substitute the coordinate (0,3) in Line 1, we get,
[tex]\begin{array}{r}{6(0)-7(3)=25} \\{-21=25}\end{array}[/tex]
Since, both sides of the equation are not equal, the coordinate (0,3) cannot be a solution to Line 1.
Thus, Option a is not the correct answer.
Option b: (0,0) is a solution for Line 2 only.
Line 2 is [tex]2 x+9 y=-3[/tex]
Let us substitute the coordinate (0,0) in Line 2, we get,
[tex]\begin{array}{r}{2(0)+9(0)=-3} \\{0=-3}\end{array}[/tex]
Since, both sides of the equation are not equal, the coordinate (0,0) cannot be a solution to Line 2.
Thus, Option b is not the correct answer.
Option c: (-6,1) is a solution for line 2 only.
Line 2 is [tex]2 x+9 y=-3[/tex]
Let us substitute the coordinate (-6,1), in Line 2, we get,
[tex]\begin{array}{r}{2(-6)+9(1)=-3} \\{-12+9=-3} \\{-3=-3}\end{array}[/tex]
Since, both sides of the equation are equal, the coordinate (-6,1) is a solution for line 2 only.
Thus, Option c is the correct answer.
Option d: (3,-1) is a solution to the system
Let us substitute the coordinate (3,-1) in line 1 and line 2, we get,
In line 1, we have,
[tex]\begin{array}{r}{6(3)-7(-1)=25} \\{18+7=25} \\{25=25}\end{array}[/tex]
Substituting (3,-1) in line 2, we have,
[tex]\begin{array}{r}{2(3)+9(-1)=-3} \\{6-9=-3} \\{-3=-3}\end{array}[/tex]
Since, from line 1 and line 2, both sides of the equation are equal, the coordinate (3,-1) is a solution to the system.
Thus, Option d is the correct answer.
Option e: (3,1) is a solution to the system
Let us substitute the coordinate (3,1) in line 1 and line 2, we get,
In line 1, we have,
[tex]\begin{array}{r}{6(3)-7(1)=25} \\{18-7=25} \\{11=25}\end{array}[/tex]
Substituting (3,1) in line 2, we have,
[tex]\begin{array}{r}{2(3)+9(1)=-3} \\{6+9=-3} \\{15=-3}\end{array}[/tex]
Since, from line 1 and line 2, both sides of the equation are not equal, the coordinate (3,1) is a solution to the system.
Thus, Option e is not the correct answer.
Answer:
Option C: (-6,1) is a solution for Line 2 only
Option D: (3,-1) is a solution to the system
Step-by-step explanation:
Find the diagonal of the rectangular solid with the given measures.
l = 2, w = 3, h = 6
√(46)
7
2√(10)
Answer:
7Step-by-step explanation:
Diagonal = [tex]\sqrt{2^{2} +3^{2}+6^{2} } =\sqrt{49} =7[/tex]
Alicia works 40 hours per week as a dental assistant. What is her monthly income? What is her yearly income?
Answer:
How could i answer without her pay rate ?
Step-by-step explanation:
How do u solve y=296-10x and y=200+6x
Answer:
[tex]x = 6[/tex] and [tex]y = 236[/tex]
Step-by-step explanation:
[tex]y = 296 - 10x[/tex]
[tex]y = 200 + 6x[/tex]
By equating both equations, we get:
[tex]296 - 10x = 200+6x[/tex]
[tex]16x = 96[/tex] [Separate variables and constants]
[tex]x = 6[/tex]
By substituting [tex]x = 6[/tex] to the above equation, we get:
[tex]y = 296 - 10(6)[/tex]
[tex]y = 296 - 60[/tex]
[tex]y = 236[/tex]
Hence, [tex]x = 6[/tex] and [tex]y = 236[/tex]
The functions f(x)=−3/4x+2 and g(x)=(1/4)x+1 are shown in the graph. What are the solutions to −34x+2=(14)x+1? Select each correct answe
Answer:
The solution is x = 1 and y = 1.25.
Step-by-step explanation:
The solution to the graphs [tex]f(x) = -\frac{3}{4} x + 2[/tex] and [tex]g(x) = \frac{1}{4} x + 1[/tex]
Solving for x we get
[tex]-\frac{3}{4} x + 2 = \frac{1}{4} x + 1[/tex] [tex]\Rightarrow[/tex] x = 1 Therefore y = 1/4 + 1 = 1.25
1 and 0
I took the test and got it right
What did the mathematician do over winter break
Answer:
he hit the slopes
Step-by-step explanation:
;)
All equations where x=2 is a solution
Answer:
Step-by-step explanation:
All equations where x=2 is a solution : a(x-2) = 0......a ≠ 0