Assume that the volume of air in an average adult’s lung follows a transformed sine function, as function of time t in seconds,
V (t) = A + B sin(ωt)
Below is a table of measurements of the volume. Identify constants A, B, and ω so that the function above fits these measurements. After 12 seconds, the measurements will repeat.
t - 0 3 6 9 12
V(t) - 7 9 7 5 7

Answers

Answer 1

Answer:

Step-by-step explanation:

Given that,

v(t) = A + B•sin(ωt)

Then,

When t = 0 v(t)= 7

7 = A + B•Sin(ω×0)

7 = A + B•Sin0

7 = A

Then,

A = 7

v = 7 + B•sin(ωt)

So,

When t = 3, v(t) = 9

v = A + B•sin(ωt)

9 = 7 + B•Sin(3w)

9-7 = B•sin(3ω)

B•sin(3w) = 2. Equation 1

Also, at t = 6 v(t) = 7, at this point, when it returns back to7, it has complete one oscillation

v = A + B•sin(ωt)

7 = 7 + B•Sin(6w)

7-7 = B•sin(6ω)

B•sin(6w) = 0

Sin(6w) = 0 / B

Sin(6w) = 0

Take arcsin of both sides

6w = Sin~1(0)

6w = π, since it has complete one oscillation

Then, w = π /6

w = π/6

Then,

v(t) = 7 + B•Sin(πt/6)

From equation 1

B•sin(3w) = 2.

B•Sin(3 × π/6) = 2

B•Sin(½π) = 2

B = 2

Then,

v(t) = A + B•sin(ωt)

A = 7, B = 2 and w = π/6

v(t) = 7 + 2•sin(πt/6)


Related Questions

In one school, a half of all students who like math like science as well. Also, in that school, a third of all students who like science also like math.
b
In that school, what is the ratio of the number of students who like math to the number of students who like science?

Answers

Answer: 2/3

Step-by-step explanation:

N is the total number of students

M is the number of students thta like math

S is the number of students that like science.

We know that half of the elements in M also are elements from S

And a third of the elements of S also are elements of M

And because those elements are common elements for both sets, we should have that:

M/2 = S/3

then we have that:

M = (2/3)*S

The ratio is 2/3

this means that the number of students that like math is 2/3 times the number of students that like science.

The ratio of the number of students who like math to the number of students who like science is 2/3

What is ratio of two quantities?

Suppose that we've got two quantities with measurements as 'a' and 'b'

Then, their ratio(ratio of a to b) a:b

or

[tex]\dfrac{a}{b}[/tex]

We usually cancel out the common factors from both the numerator and the denominator of the fraction we obtained. Numerator is the upper quantity in the fraction and denominator is the lower quantity in the fraction).

Suppose that we've got a = 6, and b= 4, then:

[tex]a:b = 6:2 = \dfrac{6}{2} = \dfrac{2 \times 3}{2 \times 1} = \dfrac{3}{1} = 3\\or\\a : b = 3 : 1 = 3/1 = 3[/tex]

Remember that the ratio should always be taken of quantities with same unit of measurement. Also, ratio is a unitless(no units) quantity.

For the given case, we can assume the real quantities by variables.

Let we have:

M = Number of students who like mathsS = Number of students who like science.

By given information, we have:

M/2 students like science too.S/3 students like maths too.

Since the statement "M/2 students like science too" and "S/3 students like maths too" are same thing, so they're taking about same students who like math and science both, thus:

[tex]\dfrac{M}{2} = \dfrac{S}{3}\\\\\text{Multiplying both the sides by 2/S}\\\\\dfrac{M}{S} = \dfrac{2}{3}[/tex]

Thus, the ratio needed (ratio of number of students liking math to the number of students liking science) is M/N = 2/3

Learn more about ratios here:

https://brainly.com/question/12106245

17 24 26 13 what's the mean

Answers

Answer:

20

Step-by-step explanation:

Mean is the average of the numbers. You get the average by adding all the numbers and then dividing by the amount of numbers there are.

Example: 17+24+26+13=80 divided by 4 is 20

The table shows data representing the total surface area
of a square pyramid with a slant height of 5 centimeters.

Answers

Answer:

B and C

Step-by-step explanation:

Answer:

parabola and quadratic

Step-by-step explanation:

just answered it

The recycling bin in the shape of a rectangular prism is 15.5 inches long, 8 inches wide and 7 inches high. The recycling bins need to be emptied when it is 80% full. What is the total amount needed, to the nearest cubic inch, before the recycle bin is ready to empty?

Answers

Answer:

694 cubic inches

Step-by-step explanation:

Dimension of prism

Length = 15.5 inches

width =  8 inches

height =  7 inches

Volume of regular prism is given  by area of base * height

area of base  = length * width ( as bin is rectangular)

area of base  = 15.5 * 8 square inches = 124 square inches

Volume of regular prism = area of base * height

      = 124 * 7 cubic inches = 868 cubic inches

_________________________________________________

868 cubic inches is the full capacity of the recycling bin

it is given that recycling bins need to be emptied when it is 80% full

so we need to find the 80% capacity of recycling bin

80% capacity of recycling bin = 80/100 *  full capacity of the recycling bin

                  = 0.8 * 868 cubic inches = 694.4 cubic inches

694.4 cubic inches is the amount needed before the recycle bin is ready to empty .

But question says answer should in nearest cubic inch

hence answer is 694 cubic inches

When a number is decreased by 17% the result is 15 what is the original number to the nearest tenth

Answers

Answer:

The original number was 18.1.

Step-by-step explanation:

This question can be solved using a simple rule of three.

When a number is decreased by 17% the result is 15.

So 15 is 100-17 = 83%. The original number is 100%. Then

15 - 0.83

x - 1

[tex]0.83x = 15[/tex]

[tex]x = \frac{15}{0.83}[/tex]

[tex]x = 18.1[/tex]

The original number was 18.1.

You have two jobs. One job pays nine dollars per hour and the other job pays $7.50 per hour. You worked 18 hours last week and earned $145.50. How many hours did you work at each job?

Answers

Answer:

[tex] Y =\frac{16.5}{1.5}= 11[/tex]

[tex] X = 18-11=7[/tex]

And then we conclude that for the first job he works 7 hours and for the second job 11 hours

Step-by-step explanation:

We can define the following notation:

[tex]X[/tex] represent the number of hours worked for one job

[tex]Y[/tex] represent the number of hours worked for the other job

[tex]p_x = 9[/tex] represent the hourly payment for the first job

[tex]p_y = 7.50[/tex] represent the hourly payment for the other job

And we can define the following equations:

[tex] X+ Y= 18[/tex]   (1) represent the toal number of hours worked

[tex] 9X +7.5 Y = 145.50[/tex]  (2) represent the total amount earned

From equation (1) if we solve for X we got:

[tex] X = 18-Y[/tex] (3)

Replacing equation (3) into equation (2) we got:

[tex] 9(18-Y) +7.5 Y =145.50[/tex]

And after solve the equation we can find the value of Y:

[tex] 162 -9Y +7.5 Y =145.50[/tex]

[tex]16.5 = 1.5 Y[/tex]

[tex] Y =\frac{16.5}{1.5}= 11[/tex]

And solving for X from equation (3) we got:

[tex] X = 18-11=7[/tex]

And then we conclude that for the first job he works 7 hours and for the second job 11 hours

Probability. Help! I'll give you Brainliest if correct as well as quite a bit of points.
A card is chosen at random from a standard deck of 52 cards, and then it is replaced and another card is chosen. What is the probability that at least one of the cards is a diamond or an ace?

Answers

Answer:

17/52

Step-by-step explanation:

there are 13 diamonds in a standard deck of 52 cards.

the probability of getting a diamond will therefore be 13/52 = 1/4

there are 4 aces in a standard deck of 52 cards.

the probability of getting an ace will therefore be 4/52 = 1/13

the probability of getting a diamond or an ace will be 1/4 + 1/13

= 17/52

0.80 (80 repeating) as a fraction

Answers

Answer:

  80/99

Step-by-step explanation:

When the repeat starts at the decimal point, put the digits over an equal number of 9s.

  [tex]0.\overline{80}=\boxed{\dfrac{80}{99}}[/tex]

This fraction cannot be reduced.

Final answer:

To convert the repeating decimal 0.80 (with 80 repeating) to a fraction, set up an equation where x equals the repeating decimal, then multiply by 10 and subtract the original equation to eliminate the repeating part, and solve for x to get 8/9.

Explanation:

The number 0.80 with 80 repeating is often represented as 0.8 with a line over the 8, indicating that the 8 is repeating indefinitely. To convert 0.80 repeating to a fraction, we can use the following method:

Let x equal the repeating decimal: x = 0.888...

Multiply both sides by a power of 10 to move the decimal point to the right of the repeating digits. Here, we multiply by 10: 10x = 8.888...

Subtract the original equation from this new equation to get rid of the repeating decimal: 10x - x = 8 (9x = 8).

Now solve for x: x = 8/9.

Thus, 0.80 with 80 repeating as a fraction is 8/9.

survey found that 68 ​% of callers complain about the service they receive from a call center. State the assumptions and determine the probability of each event described below. ​(a) The next three consecutive callers complain about the service. ​(b) The next two callers​ complain, but not the third. ​(c) Two out of the next three calls produce a complaint. ​(d) None of the next 10 calls produces a complaint.

Answers

Answer:

(a) 0.3144

(b) 0.1497

(c) 0.654

(d) [tex]1.125\times 10^{-5}[/tex]

Step-by-step explanation:

It is given that in a survey 68% of callers complain about the service.

So the probability that a caller complaint about the service = 0.68

Therefore probability that caller does not complain for the service = 1-0.68 = 0.32

(a) Probability of next three caller complain about service [tex]=0.68\times 0.68\times 0.68=0.3144[/tex]

(b) Probability that next two caller complain but not third  

[tex]=0.68\times 0.68\times 0.32=0.1497[/tex]

(c) Two out of three calls produce a complaint

[tex]=^3C_20.68^2\times 0.32=0.654[/tex]

(d) None of the 10 calls produce a complaint

[tex]=0.32^{10}=1.125\times 10^{-5}[/tex]

Final answer:

The probability of individual and consecutive complaints from a call center are calculated using the given percentage of complaints. These calculations are based on the assumption of a consistent 68% complaint rate and that each complaint is an independent event.

Explanation:

The subject of this question is probability, a concept in mathematics. To answer your question, we need to make some assumptions. We must assume that each caller's complaint is an independent event - that is, whether one caller complains does not affect whether the next caller will complain. We also need to assume that the 68% complaint rate is consistent, meaning it does not vary with time or for any other reason.

(a) The probability of three consecutive callers complaining would be (0.68)^3 = 0.314432.
(b) The probability of the next two callers complaining, but not the third would be (0.68)^2* (1-0.68) = 0.147456.
(c) Two out of the next three calls producing a complaint could occur in three ways (CCN, CNC, NCC where C is a complaining caller and N is a non-complainer). So, it would be 3*(0.68)^2* (1-0.68) = 0.442368.
(d) The probability of none of the next 10 calls producing a complaint would be (1 - 0.68)^10 = 0.0000040859.

Learn more about probability here:

https://brainly.com/question/22962752

#SPJ3

-11+___=15 i think it’s -26 but I don’t know.

Answers

answer is POSITIVE 26,

Step-by-step explanation:

because when you add positive 11 to get zero, you just need to add positive 15 to get POSITIVE 15

2 x + 5 = 10

what is x =?

Answers

Answer:

x=[tex]\frac{5}{2}[/tex]

Step-by-step explanation:

First, subtract 5 on both sides since when you subtract 5 from 5, it will give you 0.

Basically we are trying to get rid of the +5.

2x+5-5=10-5

2x=5

Divide by 2 to get rid of the 2 that is combined with the x.

2x/2=5/2

x=[tex]\frac{5}{2}[/tex]

Answer:x=5/2

Step-by-step explanation:

2x+5=10

Subtract 5 from both sides

2x+5-5=10-5

2x=5

Divide both sides by 2

2x/2=5/2

x=5/2

ow much fencing is required to enclose a circular gardan whose radius is 14m used 22 / 7 for pi

Answers

Final answer:

To enclose a circular garden with a radius of 14m, you would need 88 meters of fencing.

Explanation:

To find the amount of fencing required to enclose a circular garden, you need to calculate the circumference of the garden. The formula for circumference is given by C = 2πr, where r is the radius of the garden.

Given that the radius is 14m, you can use the value of π as 22/7. So, the circumference is C = 2 * (22/7) * 14 = 88m.

Therefore, you would need 88 meters of fencing to enclose the circular garden.

Distance from (3,5) and (-2,-2)

Answers

Answer:5,7

Step-by-step explanation:

Put the fraction in order from least to greatest 1/8, 1/3, 1/6

Answers

Answer:

You have to make them equal first. Start with that.

1/8  --> 3/24

1/6 ---> 4/24

1/3  --> 8/24

Now, order them.

1/8, 1/6. 1,3

Find x, y, z, and w.
[x 6 (2x-1) y 9 9y] = [(2x-3) z 5 7 (w+1) (8y+7)]

Answers

Answer:

  (x, y, z, w) = (3, 7, 6, 8)

Step-by-step explanation:

Your list equation seems to resolve to 6 equations:

x = 2x -36 = z2x -1 = 5y = 79 = w +19y = 8y +7

The first equation tells you ...

  0 = x -3 . . . . . subtract x

  3 = x . . . . . . . add 3

We can check this in the third equation:

  2(3) -1 = 5 . . . true

The fifth equation tells you ...

  8 = w . . . . . . . subtract 1

We can check the value of y in the last equation:

  9(7) = 8(7) +7 . . . true

The variable values are ...

  (x, y, z, w) = (3, 7, 6, 8)

Using the equation y=x-5, describe how to create a
system of linear equations with an infinite number of
solutions.

Answers

Answer:

You would create another equations that have same form as given equation.

For example, given y = (2/3)x - 5

=> Other one could be y = 2[(1/3)x - 5/2]

...

Hope this helps!

:)

Answer:

Sample Response/Explanation: To have an infinite number of solutions, the equations must graph the same line. That means the equations must be equivalent. To form an equivalent equation, use the properties of equality to rewrite the given equation in a different form. Add, subtract, multiply, or divide both sides of the equation by the same amount.

Step-by-step explanation:

What is one tenth of 75

Answers

Answer:

the answer is 7.5. hope this helps

Answer:

7.5

Step-by-step explanation:

Your total FICA contribution which includes Social Security and Medicare is 15.3% of your salary. 12.4% of your FICA contribution is for Social Security. Your annual income is $67,525. What will be the total deduction be for you and your employer for Medicare?

Answers

Answer:

$1,958.23

Step-by-step explanation:

Annual income = $67,525

Total FCIA = 15.3% of salary

Since my annual income is $67,525 the FCIA contribution = 15.3%.

But 12.4% is for Social Security.

The remaining 2.9%(15.3% - 12.4%) will be for Medicare taxes.

The total deduction for I and my employer for medicare taxes will be:

2.9% * $67,525

= $1,958.225

The total deduction for medicare would be: $1,958.23

Note: Assuming we were asked to calculate only employee's medicare, the deduction would be 50% of $1,958.23.

Answer:

1958

Step-by-step explanation:

During a walk a thin Noah’s time in hours, t, and distance in miles, d, are related by the equation 1/3d = t. A graph of the equation includes the point (12, 4)
1. Identify the independent variable
2. What does the point (12, 4) represent in this situation
3. What point would represent the time it too to walk 7 1/2 miles

Answers

Answer:

Step-by-step explanation:

The independent variable is time (t), determining the distance covered.

The point (12, 4) means Noah walks for 12 hours, covering 4 miles.

To find time for 7[tex]\frac{1}{2}[/tex] miles,  [tex]\frac{1}{3}d = t \),[/tex] Substitute 7.5 for d, yielding [tex]\( \frac{1}{3} 7.5 = t \) = 2.5 hour[/tex]. So, (2.5, 7.5) represents Noah taking 2.5 hours to walk 7[tex]\frac{1}{2}[/tex] miles.

1. **Identify the independent variable**:

In the equation [tex]\( \frac{1}{3}d = t \),[/tex] the independent variable is time (t). The independent variable is the one that stands alone and is not dependent on other variables. In this case, time (t) is independent as it determines the distance covered (d).

2. **What does the point (12, 4) represent in this situation**:

  The point (12, 4) represents a specific instance in the relationship between time and distance. In this case, it means that when Noah walks for 12 hours, he covers a distance of 4 miles. This point is a solution to the equation  [tex]\( \frac{1}{3}d = t \),[/tex] where 12 hours corresponds to the time (t) and 4 miles corresponds to the distance (d).

3. **What point would represent the time it took to walk 7 1/2 miles**:

  To find the point representing the time it takes to walk 7 1/2 miles, we substitute 7.5 miles into the equation and solve for time (t). First, we rewrite the equation without fractions to make the calculation simpler:

[tex]\[ \frac{1}{3}d = t \][/tex]

[tex]\[ \frac{1}{3} \times d = t \][/tex]

[tex]\[ \frac{1}{3} \times 7.5 = t \][/tex]

 Now, we simply multiply 1/3 by 7.5:

[tex]\[ t = \frac{1}{3} \times 7.5 \][/tex]

[tex]\[ t = 2.5 \][/tex]

  So, the time it takes to walk 7[tex]\frac{1}{2}[/tex] miles is 2.5 hours. Therefore, the point representing this situation is (2.5, 7.5), indicating Noah takes 2.5 hours to walk 7.5 miles. This point satisfies the equation [tex]\( \frac{1}{3}d = t \)[/tex], where 2.5 hours corresponds to the time (t) and 7.5 miles corresponds to the distance (d).

In summary, the independent variable in this situation is time (t), the point (12, 4) represents Noah walking for 12 hours and covering 4 miles, and the point (2.5, 7.5) represents Noah taking 2.5 hours to walk 7[tex]\frac{1}{2}[/tex] miles.

What is the growth or decay and the percentage rate of Y=23(0.292)^x

Answers

Answer:

So the decay percentage rate is of 70.8%

Step-by-step explanation:

An exponentil function has the following format:

[tex]y = ca^{x}[/tex]

In which c is a constant.

If a>1, we have that a = 1 + r and r is the growth rate.

If a<1, we have that a = 1 - r and r is the decay rate.

In this problem:

a = 0.292

A is lesser than 1, so r is the decay rate.

1 - r = 0.292

r = 1 - 0.292

r = 0.708

So the decay percentage rate is of 70.8%

The vertex of the graph of a quadratic function is in the second quadrant. The related equation has no real solutions. Which statement is true?
a) The graph opens up.
b) The graph opens down.
c) The y-intercept is 0.
d) The axis of symmetry is x = 0.

Answers

Answer: a) The graph opens up.

Step-by-step explanation:

The vertex is the minimum/maximum of a parabola.

We know that the vertex is in the second quadrant (so it is in the quadrant of positive y values and negative x values)

We also know that it has no real roots, so the graph never touches the x-axis, and knowing that the vertex is above the x-axis, then the graph must open upwards.

Then the correct option is:

a) The graph opens up.

Final answer:

When the vertex of the graph of a quadratic function is in the second quadrant and has no real solutions, this means that the graph opens down. The other statements provided are not necessarily true in this specific context.

Explanation:

In the context of this problem related to quadratic functions, if the vertex of the graph is in the second quadrant and there are no real solutions, the correct statement is (b) the graph opens down. Quadratic functions in the second quadrant that have no real solutions indeed point downwards. This is due to the fact that the function cannot touch or cross the x-axis (indicating that there are no real solutions).

As for option (c), the y-intercept could be any real number, so it does not have to be 0. Concerning option (d), the axis of symmetry can't be x = 0 as the vertex is in the second quadrant and x = 0 is the y-axis. Lastly, option (a) is false because if the graph opened up it would pass through the x-axis, providing real solutions, contrary to what is given in the problem.

Learn more about Quadratic Functions here:

https://brainly.com/question/35505962

#SPJ11

An inventor has developed a new, energy-efficient lawn mower engine. He claims that the engine will run continuously for 5 hours (300 minutes) on a single gallon of regular gasoline. Suppose a simple random sample of 45 engines is tested. The engines run for an average of 290 minutes, assume the population standard deviation is 20 minutes. Test the null hypothesis that the mean run time is at least 300 minutes. Use a left sided test. Use a 0.025 level of significance.

a) Find the critical value for this test.

b) Find the test statistic
c) Find the p-value for this test.

d) My conclusion is :

e) Is the test statistically significant?

f) Could I use a symmetric confidence interval to solve this problem and if so what is it?

Answers

Answer:

b,c

Step-by-step explanation:

A circle has it's radius as 3.7 inches. What is the area, in square inches, of the circle? *

Answers

Answer:

A =42.9866 in^2

Step-by-step explanation:

The area of a circle is given by

A = pi r^2

The radius is 3.7

A = pi (3.7)^2

Approximating pi by 3.14

A = 3.14 (3.7)^2

A =42.9866

Answer:

The area, in square inches, of the circle is 43.01.

A bag of chips is 24 ounces. A serving size is 3/4 ounce. How many servings are in the bag of chips?


Answers

Answer:

The correct answer to the following question will be "32 servings".

Step-by-step explanation:

The given values are,

A bag of chips = 24 ounces

Serving size = 3/4 ounces

Servings = ?

Now,

On dividing "24 ounces" by "3/4 ounce", we get

⇒  [tex]\frac{24}{\frac{3}{4}}[/tex]

⇒  [tex]24\times \frac{4}{3}[/tex]

⇒  [tex]8\times 4[/tex]

⇒  [tex]32[/tex]

Thus, the bag of chips contains "32" servings.

Final answer:

To determine the number of servings in a 24-ounce bag of chips with a serving size of 3/4 ounce, divide the total weight by the serving size, resulting in 32 servings.

Explanation:

The student has asked a question about how to calculate the number of servings in a bag of chips given its total weight and the size of each serving. This is a mathematics problem involving division.

To find out the number of servings in a 24-ounce bag of chips where each serving is 3/4 ounce, you divide the total weight of the bag by the weight of a single serving:

Number of servings = Total weight of the bag / Weight of one serving

Number of servings = 24 oz / (3/4 oz)

To divide the fractions, you multiply by the reciprocal of the serving size, which is:

Number of servings = 24 oz × (4/3)

Number of servings = 32

Therefore, there are 32 servings in the 24-ounce bag of chips.

At a tennis tournament a statistician keeps track of every serve. The statistician reported that the mean serve speed of a particular player was 101 miles per hour​ (mph) and the standard deviation of the serve speeds was 15 mph. Assume that the statistician also gave us the information that the distribution of the serve speeds was bell shaped. What proportion of the​ player's serves are expected to be between 116 mph and 146 ​mph? Round to four decimal places.

Answers

Answer:

0.1574 = 15.74% of the​ player's serves are expected to be between 116 mph and 146 ​mph

Step-by-step explanation:

Problems of normally distributed(bell-shaped) samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 101, \sigma = 15[/tex]

What proportion of the​ player's serves are expected to be between 116 mph and 146 ​mph?

This is the pvalue of Z when X = 146 subtracted by the pvalue of Z when X = 116. So

X = 146

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{146 - 101}{15}[/tex]

[tex]Z = 3[/tex]

[tex]Z = 3[/tex] has a pvalue of 0.9987

X = 116

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{116 - 101}{15}[/tex]

[tex]Z = 1[/tex]

[tex]Z = 1[/tex] has a pvalue of 0.8413

0.9987 - 0.8413 = 0.1574

0.1574 = 15.74% of the​ player's serves are expected to be between 116 mph and 146 ​mph

Final answer:

To find the proportion of the player's serves between 116 mph and 146 mph, calculate the z-scores and use a z-table.

Explanation:

To find the proportion of the player's serves between 116 mph and 146 mph, we need to calculate the z-scores for these values and then use a z-table.

The formula for calculating the z-score is z = (x - mean) / standard deviation. So, for 116 mph: z = (116 - 101) / 15 = 1; and for 146 mph: z = (146 - 101) / 15 = 3.

The z-score of 1 corresponds to a cumulative proportion of 0.8413 and the z-score of 3 corresponds to a cumulative proportion of 0.9987. So, the proportion of serves between 116 mph and 146 mph is 0.9987 - 0.8413 = 0.1574, rounded to four decimal places.

Learn more about the Proportion of serves between specific speeds here:

https://brainly.com/question/31541178

#SPJ3

What is the discriminant of the quadratic equation 0 = -x -4x -2

Answers

Answer:

search on google

Step-by-step explanation:

ILL GIVE YOU BRAINLIST !! *have to get it right ! *
Find the slope of the line represented in the table.

Answers

Answer:

2/3

Step-by-step explanation:

To find the slope take the difference of the y's over the difference of the x's

(8-6)/ (12-9)

2/3

A clinical trial tests a method designed to increase the probability of conceiving a girl. In the study 400 babies were​ born, and 340 of them were girls. Use the sample data to construct a 99​% confidence interval estimate of the percentage of girls born. Based on the​ result, does the method appear to be​ effective? nothingless than pless than nothing ​(Round to three decimal places as​ needed.) Does the method appear to be​ effective? Yes​, the proportion of girls is significantly different from 0.5. No​, the proportion of girls is not significantly different from 0.5.

Answers

Answer:

(a) 99% confidence interval for the percentage of girls born is [0.804 , 0.896].

(b) Yes​, the proportion of girls is significantly different from 0.50.

Step-by-step explanation:

We are given that a clinical trial tests a method designed to increase the probability of conceiving a girl.

In the study 400 babies were​ born, and 340 of them were girls.

(a) Firstly, the pivotal quantity for 99% confidence interval for the population proportion is given by;

                    P.Q. =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of girls born = [tex]\frac{340}{400}[/tex] = 0.85

             n = sample of babies = 400

             p = population percentage of girls born

Here for constructing 99% confidence interval we have used One-sample z proportion statistics.

So, 99% confidence interval for the population proportion, p is ;

P(-2.58 < N(0,1) < 2.58) = 0.99  {As the critical value of z at 0.5% level

                                                    of significance are -2.58 & 2.58}  

P(-2.58 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.58) = 0.99

P( [tex]-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

P( [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

99% confidence interval for p = [[tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]]

= [ [tex]0.85-2.58 \times {\sqrt{\frac{0.85(1-0.85)}{400} } }[/tex] , [tex]0.85+2.58 \times {\sqrt{\frac{0.85(1-0.85)}{400} } }[/tex] ]

 = [0.804 , 0.896]

Therefore, 99% confidence interval for the percentage of girls born is [0.804 , 0.896].

(b) Let p = population proportion of girls born.

So, Null Hypothesis, [tex]H_0[/tex] : p = 0.50      {means that the proportion of girls is equal to 0.50}

Alternate Hypothesis, [tex]H_A[/tex] : p [tex]\neq[/tex] 0.50      {means that the proportion of girls is significantly different from 0.50}

The test statistics that will be used here is One-sample z proportion test statistics;

                               T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of girls born = [tex]\frac{340}{400}[/tex] = 0.85

             n = sample of babies = 400

So, the test statistics  =  [tex]\frac{0.85-0.50}{\sqrt{\frac{0.85(1-0.85)}{400} } }[/tex]

                                     =  19.604

Now, at 0.01 significance level, the z table gives critical value of 2.3263 for right tailed test. Since our test statistics is way more than the critical value of z as 19.604 > 2.3263, so we have sufficient evidence to reject our null hypothesis due to which we reject our null hypothesis.

Therefore, we conclude that the proportion of girls is significantly different from 0.50.

Final answer:

To construct a 99% confidence interval for the percentage of girls born, calculate the sample proportion and use it to construct the confidence interval. The method appears to be effective.

Explanation:

To construct a 99% confidence interval for the percentage of girls born, we first need to calculate the sample proportion. In this case, the sample proportion of girls is 340/400 = 0.85. Using this proportion, we can construct the confidence interval using the formula.

Confidence Interval = sample proportion ± z x √((sample proportion x (1 - sample proportion)) / sample size). Calculating the confidence interval, we find that it is 0.808 to 0.892. Since this interval does not include the value of 0.5, the method appears to be effective.

Learn more about Confidence interval here:

https://brainly.com/question/34700241

#SPJ6

Reading 183 pages in 61 minutes is a pace of how many pages a minute

Answers

Answer: 3 pages per minute

Step-by-step explanation:

61x=183

x= the amount of pages

183/61= 3 pages

You can check this by multiplying 3 by 61 which = 183.

Answer:

3

Step-by-step explanation:

183             x

-----   =      -----

61                1

Cross Multiply

183= 61x

Divide

3=x

Find the coordinates of the fourth vertex that completes the construction of the rectangle on the coordinate plane.
A(3,-7)
B(7,-3)
C(-3,7)
D(-7,3)​

Answers

Answer:

The correct answer would be C (-3, 7)

Step-by-step explanation:

The first coordinate is the x (-3) and the second is the y (+7); therefore, the coordinate of the fourth vertex on the plane is (-3, 7).

Answer:

your answer should be C (-3, 7)

Step-by-step explanation:

brainliest pls

Have a nice day

Other Questions
To insert a pause in a graphic novel, a cartoonist mightwiden the gutters between panels.widen the panel.devote several panels to the same incidentall of the above. Which of the following is NOT included in the mandatory spending portion of the budget? A. Medicare B. Social Security C. appropriation bills D. veterans benefits Correct answer 100% is B. Social Security On January 1, the Elias Corporation issued 10% bonds with a face value of $56,000. The bonds are sold for $60,000. The bonds pay interest semiannually on June 30 and December 31 and the maturity date is December 31, ten years from now. Elias records straight-line amortization of the bond discount. The actual interest expense reported in the income statement for the year ended December 31 of the first year is unidad 9 leccin a crucigrama 6.06 war on the bank Select three of the following aspects and influences of Jacksons presidency:Nullification CrisisNational Bank vetoMaysville Road vetopolitical participation constitutional governmentSpecie Circular include five status updates describing Jacksons perspective on the court cases and/or selected aspects of his presidency each status update should be at least three complete sentences (" status updates are where you pretend your Jackson in the court and give 5 updates of what is happening. Your expected payroll for a physical therapy business includes two licensed physical therapists, three technicians, and an aide. They are paid $70,000, $50,000, and $30,000 per person per year, respectively. What is your total annual payroll? Please help! Just reflections. A smaller circle passes through the center of, and is tangent to, a larger circle. The area of the smaller circle is 9 square units. What is the area of the larger circle in square units? Explain why floods, hurricanes, and tornadoes are aspects of weather, not climate. Why is a 13 placed in front of the oxygen on the perodic tableA) It is a subscript representing that there are 13 oxygen atoms in an oxygen moleculeB) It is a coefficient representing that there are 13 oxygen atoms in the reactantsC) It is a coefficient representing that there are 13 oxygen molecules in the reactantsD) It is a subscript representing that there are 13 oxygen atoms in the reactants George is writing about the ways a friendship can change over the years. He does not want to write about his own experiences. His audience includes people who like to read realistic literature. Which text genre would best suit Georges purpose?informational textmemoirargumentative essayliterary fiction Why is media important? Which statements describe the movement of blood through the heart? Select two options. A. Blood from the veins enters the ventricles.B. Atria and ventricles contract at the same time. C. Atria push blood into the ventricles. D. Valves allow for two-way blood flow. E. Ventricles push blood out of the heart. can someone do this please What is the mode for 20 sites? The weather reported says that there is a 12% chance that it will be unfortunately windy tomorrow. What is the probability that it will not be windy? The volume of a cylinder is 768 in3. Find the radius of the cylinder (in inches) if the height is 3 in. Many everyday decisions, like who will drive to lunch or who will pay for the coffee, are made by the toss of a (presumably fair) coin and using the criterion "heads, you will; tails, I will." This criterion is not quite fair, however, if the coin is biased (perhaps due to slightly irregular construction or wear). John von Neumann suggested a way to make perfectly fair decisions, even with a possibly biased coin. If a coin, biased so that P(x)equals 0.4700 and P(t)equals 0.5300, is tossed twice, find the probability Audiology Service Note This 3-year-old twin was born at 27 weeks gestation. At the time of birth her weight was 2 pounds, 5 ounces. At birth the child failed the Universal Infant Hearing Screen and was then seen by me for auditory brainstem response evaluation. At 2 years old the child was fit with binaural Oticon Tego postauricular hearing aids. The child presents today for a hearing aid assessment. At this time her canals and TM are clear. RESULTS: Testing at an intensity level of 70 dB nHl indicated absolute and interwave latencies that were within normative values. Responses to air-conducted clicks were obtained at intensities down to 30 dB nHl in the right ear and 40 dB nHl in the left ear. Results are consistent with mild bilateral high-frequency hearing loss. Continued binaural hearing aid use is indicated. Schedule for reevaluation in 3 months. ICD-10-PCS Code ___ You exert the same force on two objects of different masses. Which object will have the greater acceleration? Explain your answer. Steam Workshop Downloader