In many texts, it's far set up that a victim's frame decreases in temperature via way of means of about 1. 5°F in step with hour. Hence, the sufferer has been lifeless for about thirteen hours and 19 minutes.
Using the method to calculate the time because of the demise of individual the usage of temperature :
Time because demise n=(98.6-frame temperature (°F ) ÷ TT = (1.5or * 3) relying on the ambient temperatureWhen ambient temperature <32; T=1.5 ; else T = 3.0Body temperature of im = 25.nine degrees * C =78. 62 °°FInputting the Values into the method:Time because eath = (98.6 - 78.62) / 1.5Time because = 13.32 hours (thirteen hours 19 minutes)What is body temperature?Body temperature is a degree of the way properly your frame could make and dispose of warmness. The frame is superb at retaining its temperature inside a secure range, even if temperatures out of doors the frame extrude a lot.
Therefore, the victim sufferer has been lifeless for about thirteen hours and 19 minutes.
To learn more about body temperature refer to the link :
https://brainly.com/question/20794759
What would happen if cellular respiration did not occur?????
Answer:
The answer is The cell could not produce the energy necessary to carry out its metabolic processes and therefore would cause death.
Explanation:
Cellular respiration is a metabolic process by which cells reduce oxygen and produce energy and water. These reactions are indispensable for cell nutrition. The main objective of cellular respiration is to produce the energy that the cell needs to perform mechanical, chemical and transport work, that is, due to cellular respiration, the cell can obtain the energy necessary to perform all its metabolic functions.
Final answer:
Without cellular respiration, ATP production would cease, affecting all cellular functions. An absence of respiration would impede the breakdown of fatty acids and lead to increased CO₂ levels, disrupting the carbon cycle and threatening life. Glycolysis in red blood cells is crucial, and if hindered, it would affect their ability to transport oxygen.
Explanation:
If cellular respiration did not occur, several critical events would happen, leading to severe malfunction in biological systems. First and foremost, ATP production would cease, and since ATP is the energy currency of the cell used for nearly all biological processes, cells would not have the required energy to function properly. Moreover, substrates like pyruvate and citric acid, crucial for the energy production pathway, would not be produced, disrupting the metabolic cycle.
Without aerobic respiration, cells cannot burn fat for energy as fatty acids enter the pathway during the citric acid cycle, which requires oxygen. This would lead to an inability to utilize fat stores for energy, causing a significant impact on energy management and long-term energy reserves, which could result in the cessation of all functions that rely on fat as a fuel source.
Additionally, the absence of cellular respiration would lead to the failure of the detoxification of carbon dioxide, causing a buildup of CO₂ which could be life-threatening. The relationship between photosynthesis and cellular respiration is vital for the planet's health. An absence would disrupt the carbon cycle, leading to increased levels of CO₂ and potentially suffocating breathing organisms.
Organisms incapable of aerobic respiration, like human red blood cells, which rely on glycolysis, would also suffer if glycolysis were hindered because they cannot tap into other sources of energy. This would impair their function, as they require a consistent supply of energy to maintain membrane integrity and transport oxygen throughout the body.
In summary, the absence of cellular respiration would be catastrophic for all aerobic organisms, leading to a lack of energy production and as a consequence, insufficient cellular function and, ultimately, the inability to sustain life.
In eukaryotes, the mitochondrion houses many enzymes necessary for the myriad of reactions that constitute cellular respiration. If these conditions are not maintained, such as the absence of oxygen, the process cannot occur efficiently leading to failed energy production.
During anaerobic respiration, less ATP is produced in the absence of oxygen, which is not enough to sustain human cells for an extended time. This occurs in muscle cells during intense exercise and is seen in yeast during beer brewing. This form of respiration is only a temporary solution during oxygen-deficient situations and is not a sustainable alternative to aerobic respiration.
Which of the following is true about the ability of water to produce electricity?
A. The kinetic energy of moving water is converted to electrical energy.
B. The moving water releases energy to the surroundings in the form of chemical energy.
C. The energy produced by moving water is converted to potential energy.
D. The total amount of energy produced by moving water is constant.
A. The kinetic energy of moving water is converted to electrical energy.
A weather map is an example of a
a.
hypothesis.
b.
manipulated variable.
c.
model.
d.
scientific theory.
Which term describes what scientists expect to happen every time under a particular set of conditions?
Which option is a balanced equation for cellular respiration?
The answer is; B
C6H12O6+6O2→6CO2+6H2O+36ATP
In respiration, glucose is broken down to produce ATP that is the energy currency of the body. The process of respiration occurs in three processes; the pyruvate cycle, the Krebs cycle, and oxidative phosphorylation. Water and ATP are the ultimate products in the biochemical process of breaking down glucose molecules. Oxygen is consumed. The equation has to be balanced on both sides due to the rule of conservation of matter in thermodynamics.
Which best explains how Ivanovski’s work led to a change in the germ theory?
He tried to promote his hypothesis as a law.
He used a new experimental method to test his hypothesis.
He used a more powerful bacterial strain than other scientists had.
He obtained results that confirmed what other scientists were thinking.
The universe could be considered an isolated system because?
tRNA molecules are ejected from their amino acid in which step of translation?
Answer:
The correct answer will be at elongation step of translation.
Explanation:
Translation is a process during which synthesis of proteins takes place inside a special organelle called ribosomes in cytoplasm or ER of the cell. It proceeds in three stages: Initiation, elongation and termination.
tRNA molecules are involved during elongation phase of the translation where they add amino acids to nascent protein chain.
tRNA gets charged with amino acids at its 3' end and becomes charged aminoacyl tRNAs which binds to A (aminoacyl) site of the ribosomes where it forms peptide bonds growing polypeptide chain. Then it binds to P (peptidyl) site of ribosomes where an initiation complex with free A site accepts tRNA after start codon chain elongation takes place. In last, they binds to E (exit) site of ribosomes where they gets dissociated from the ribosomes so that they can be recharged again with free amino acids.
Thus, during elongation phase they gets dissociated from the ribosomes.
You are a researcher interested in studying the cytoskeleton. How can you use antibodies to locate actin- and tubulin-containing structures?
if a DNA molecule is compared to a spiral staircase what parts make up the steps
identify a use for glucose in a plant that does not occur in animals
Glucose is used by plants to synthesize cellulose, the structural material in plant cell walls, which does not occur in animals as they cannot produce cellulose.
Explanation:One use for glucose in plants that does not occur in animals is in the synthesis of cellulose, which is the structural material of a plant's cell walls. Animals, including humans, are unable to synthesize cellulose because they lack the necessary enzymes to form the beta-glycosidic linkages that characterize this polysaccharide. Cellulose gives plants their rigid structure, allowing them to stand upright and form the necessary frameworks for leaves, stems, and roots. In contrast, animals must obtain cellulose indirectly by eating plants or plant products, and most cannot digest it, using it mainly for fiber.
Since the expansion of international trade, Dutch elm disease and chestnut blight have nearly killed off the Dutch elm and chestnut trees in America. One might infer that these diseases were the result of _____.
introduced species
competition for space
poor tree husbandry
lack of pollinators
Answer:
The most appropriate answer would be introduced species.
Introduced or invasive species refers to the organism which is not native to that ecosystem or place and can cause harm to the environment, the economy as well as human health.
So, the expansion of international trade might result in the introduction of Dutch elm disease-causing Ascomycota fungi in America.
Another example may include the introduction of water hyacinth in India.
Explain the process of desertification. Include an example of an event that can cause desertification and describe the changes that occur as desertification takes place. Finally, explain the end result of this process.
9/27/18
Desertification is when an environment becomes drier, like a desert.The Dry climate causes plant life to decrease, which causes pray life to decrease, which causes predators life to decrease. This significant change is vary harmful to the environment. This can happen to any environment. Deserts expand when this happens to deserts.
In the si system time can be meaasured in _____.
Drosophila may be monosomic for chromosome 4, yet remain fertile. A recessive mutant for bent bristles is identified on chromosome 4. Determine the genotypes of the F1 and F2 progeny for the following crosses.
The following cross is conducted of true-breeding adult flies: monosomic bent bristles x diploid normal bristles. Select the two F1 genotypes that will be produced from this cross
a. -/b+
b. -/b
c. b/b
d. b/b+
e. b+/b+
Final answer:
In a cross between a monosomic bent bristle fruit fly and a diploid normal bristle fruit fly, two possible F1 genotypes are produced: monosomic with a normal allele (-/b+) and diploid with one bent bristle and one normal allele (b/b+).
Explanation:
The question involves a cross between a monosomic bent bristle fruit fly (Drosophila melanogaster) and a diploid normal bristle fruit fly to see which F1 genotypes would be produced. In the context of genetics, "monosomic" refers to having only one copy of a particular chromosome in an otherwise diploid cell. Bent bristles (b) is considered a recessive mutation on chromosome 4. When a monosomic bent bristle fly is crossed with a diploid normal bristle fly, since the monosomic fly has only one chromosome 4 with the 'b' allele and the diploid normal has two chromosome 4s, one with 'b+' (normal) allele, the possible genotypes for F1 are as follows:
-/b+ (monosomic with the normal allele)
b/b+ (diploid with one bent bristle and one normal allele)
Therefore, the correct F1 genotypes produced from this cross are a. -/b+ and d. b/b+. This demonstrates how monosomy and complete dominance work in fruit fly genetics.
Based on anatomical similarities, to which modern animal is Dr. Digger’s creature most closely related? zebra bony fish sea turtle snak
c-sea turtle is the answer
Organisms that reproduce sexually receive genetic material from both parents when fertilization occurs. The development of the zygote into a multicellular organism is the result of
The answer is B. Mitosis and cell differentation.
In which specimen were cells first identified?
microorganism
cork bark
DNA
mitochondrion
The correct answer is:
cork bark
Explanation:
The cell was first discovered and described by Robert Hooke in 1665. He mentioned that it looked especially like cells or little rooms which friars occupied, in this way limiting the name. Nevertheless what Hooke really recognized as the dead cell dividers of plant cells (cork) as it bestowed up under the magnifying lens.
Why was the cloning of Dolly such a monumental step in the history of reproductive technology
What is the function of the cholesterol molecules in a cell membrane?
A. They make it thicker
B. They make it porous
C. They make it more fluid
D. They make it less flexible
Tomato plants usually have hairy stems. Hairless stems are present in tomato plants that are homozygous recessive for this trait. If the stem characteristics are determined by a single gene, what is the expected outcome of crossing two tomato plants that are heterozygous for hairy stems?
The expected outcome of crossing two tomato plants that are heterozygous for hairy stems is observing a phenotypic proportion of 3:1 plants (3 hair stem plants: 1 hairless stem plant).
What is dominance?Dominance in genetics is a phenomenon where the dominant alleles mask the recessive allele in heterozygous individuals.
Heterozygous individuals carry two different alleles for a given gene locus.Homo-zygous individuals carry the same allele or gene variant for a given gene locus.In conclusion, the expected outcome of crossing two tomato plants that are heterozygous for hairy stems is observing a phenotypic proportion of 3:1 plants (3 hair stem plants: 1 hairless stem plants).
Learn more in:
https://brainly.com/question/3578928
Fructose is a molecule that can move across the cell membrane. if the concentration of fructose is higher outside the cell than inside the cell, then what will happen by the process of diffusion?
Fructose will move into the cell from outside by diffusion due to the concentration gradient, continuing until the concentrations inside and outside the cell are equal.
When the concentration of fructose is higher outside the cell than inside, the molecule will move across the cell membrane by the process of diffusion. Diffusion is the net movement of molecules from an area of higher concentration to an area of lower concentration, following the concentration gradient until equilibrium is reached. As long as fructose can freely pass through the cell membrane without the need for specific carrier proteins, it will continue to diffuse in this manner.
The process of diffusion does not depend on the pore specificity of the semipermeable membrane, but rather on the existence of a concentration gradient. The presence of this gradient means that fructose will naturally move into the cell until the intracellular and extracellular concentrations of fructose are equal. This movement of fructose will occur without any input of energy and will cease when equilibrium is reached.
That is an example of the survival of the _____. fittest most fit
PLEASE ANSWER QUICKLY
What are CAM and C4 plants trying to eliminate from the Calvin cycle?
carbon dioxide
water
oxygen
Final answer:
CAM and C4 plants are trying to eliminate oxygen from the Calvin cycle.
Explanation:
CAM and C4 plants are trying to eliminate oxygen from the Calvin cycle.
CAM plants, such as cacti and succulents, close their stomata during the day to conserve water. At night, they take up CO2 and store it as organic acids, which are broken down during the day, releasing CO2 to enter the Calvin cycle.
C4 plants, like corn, have a unique leaf structure that allows them to keep their stomata open for CO2 capture while minimizing water loss. They use a specialized pathway to concentrate CO2 in bundle sheath cells, separating oxygen from the Calvin cycle and preventing photorespiration.
CAM and C4 plants are trying to eliminate oxygen from the Calvin cycle.
Explanation:CAM and C4 plants are both trying to eliminate oxygen from the Calvin cycle.
In CAM plants, stomata are closed during the day to minimize water loss, but they open at night to take up CO2. The CO2 is fixed by combining it with PEP to produce malic acid, which is stored in vacuoles. During the day, the malic acid is converted back into pyruvate and CO2, which enters the chloroplasts and joins the Calvin cycle.
In C4 plants, CO2 is rapidly transferred from mesophyll to bundle sheath cells. In the bundle sheath cell chloroplasts, malic acid is oxidized to pyruvate, releasing CO2. This CO2 then enters the Calvin cycle for rapid fixation.
a virus is unlike an organism in that the virus is __________.
Answer:
I belive that it is that a virus in nonliving but I'm like 99% sure
Explanation:
Which type of wave requires a medium in which to travel? A) Heat B) Electromagnetic C) Light D) Mechanical
Mechanical waves are the kind of wave that need a medium to move through. The correct option is D.
Thus, mechanical waves need a physical medium like a solid, liquid, or gas. Through the oscillation or vibrating of the medium's particles, these waves transmit energy. Sound waves, seismic waves (from earthquakes), and water waves are all examples of mechanical waves.
In order to travel in a medium, mechanical waves like sound waves and seismic waves must physically interact with and move around particles. Heat, electromagnetic, and light waves, on the other hand, may go across a vacuum or void of space without a medium.
Thus, the ideal selection is option D.
Learn more about the mechanical waves here:
https://brainly.com/question/31180289
#SPJ6
Once a person gets a viral infection, the infection can best be treated with ______.
rest
vaccinations
antibiotics
Once a person gets a viral infection, the infection can best be treated with antibiotics.
What are antibiotics used for?Antibiotics are used to treat or prevent some types of bacterial infections. They are not effective against viral infections, such as the common cold or flu. Antibiotics should only be prescribed to treat health problems: that are not serious but are unlikely to clear up without antibiotics – such as acne.
Are antibiotics harmful?They are very helpful in fighting disease, but sometimes antibiotics can actually be harmful. Key facts to know about antibiotic safety: Antibiotics can have side effects including allergic reactions and serious, possibly life-threatening diarrhea caused by the bacteria (germ) Clostridium.
Learn more about antibiotics here https://brainly.com/question/6970037
#SPJ2
what keeps molecules concentrated, limiting disorder?
what is the difference between T dependent antigen and T independent antigen? ...?
The two large claws that scorpions have are called _______.
a. larva
b. pedipalps
c. polyps
d. thoraxes