Answer:
Cu
Explanation:
I got it right on my test.
The element with an atomic mass of about 63.5 amu is Copper, which has the chemical symbol Cu.
An atom with an average atomic mass of about 63.5 amu corresponds to the element Copper with the chemical symbol Cu. This is determined by consulting a periodic table where each element is listed with its respective atomic mass closest to the given value. The atomic mass is the weighted average of the masses of its isotopes, and in the case of copper (Cu), this is calculated from its two stable isotopes with mass numbers 63 and 65. Thus, the correct chemical symbol for the atom described with an atomic mass of 63.5 amu is Cu.
The following is an example of what type of chemical reaction?
CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g)
Select one:
a. Single replacement
b. Decomposition
c. Double replacement
d. Combustion
1.15 g of a metallic element reacts with 300 cm3 of oxygen at 298 K and 1 atm pressure, to form
an oxide which contains O2– ions.
What could be the identity of the metal?
A calcium
B magnesium
C potassium
D sodium
PLZZZ HELP ME!!!!
Newton’s first law states that an object in motion will continue at the same speed and in the direction unless it is acted upon by a(n) _________________________ force.
Why do elements in a group on the periodic table have similar chemical properties?
a. similar atomic masses
b. similar atomic numbers
c. same number of outermost electrons
d. same number of protons
A single atom of platinum has a mass of 3.25 x 10^-22 g. What is the mass of 6.0 x 10^23 platinum atoms?
density of gold is 19.3 g/cm^3 what is the mass of nugget that has a volume 1.47cm^3
Answer:
28.372 grams is the mass of nugget.
Explanation:
Density is defined as mass of the substance present in unit volume of the substance.
[tex]Density=\frac{Mass}{Volume}[/tex]
Mass of gold nugget = m
Volume of gold nugget = V =[tex] 1.47 cm^3[/tex]
Density of the gold = [tex]d=19.3 g/cm^3[/tex]
[tex]m=d\times V=19.3 cm^3\times 1.47 cm^3=28.372 g[/tex]
28.372 grams is the mass of nugget.
4.What did J. J. Thomson observe when he applied electric voltage to a cathode ray tube in his famous experiment?
A.The stream of cathode ray particles was moving very slowly.
B.The glass opposite of the negative electrode started to glow.
C.The electric voltage had little effect on the stream of particles.
D.The tube contained two pieces of metal that served as electrodes.
11.The table below gives the data that is needed to calculate the average atomic mass of element B.
B-10(Isotope), 10.01(Atomic mass), 19.91(Relative abundance %)
B-11(Isotope), 11.01(Atomic mass), 80.09(Relative abundance %)
Correct option is B
B.The glass opposite of the negative electrode started to glow.
Explanation:In his experiment, tubes were two electric plates, producing a positive anode and a negative cathode, which he expected that it would deflect the rays. As he supposed, the rays were deflected by the electric charge, proving beyond doubt that the rays were made up of charged particles bearing a negative charge.
Answer 11:Boron is a chemical element in the periodic table with symbol B and has atomic number 5.
Boron has two naturally occurring isotopes Boron-10 and Boron-11. The average atomic mass of these are calculated as
(10.01×0.198) + (11.01×0.802) = 10.81 amu
So, the average atomic mass of the Boron isotopes is 10.81 amu.
Answer:
The answer is b
Explanation:
I just recently did the test
name two properties of many substances containing ionic bonds
Ionic compounds have high melting and boiling points due to strong ionic bonds and conduct electricity when dissolved in water or molten, as the ions are free to move.
Two properties of substances containing ionic bonds are:
High melting and boiling points: Substances with ionic bonds tend to have high melting and boiling points because the electrostatic forces of attraction between their ions are very strong. Ionic compounds, for instance, maintain a crystal lattice that requires a large amount of energy to break apart.Conductivity: When ionic compounds are in their solid state, they are poor conductors of electricity due to the fixed positions of ions within the crystal lattice that prevent free movement. However, once dissolved in water or molten, the resulting free ions allow the substance to conduct electricity effectively. This is because ions are then able to move freely and carry charges through the solution or molten liquid.These properties arise from the strong electrostatic forces that hold the oppositely charged ions together, creating ionic compounds with characteristic behaviors when in different states.
i need the answer to 10 please help
What is the empirical formula for a compound if a sample contains 3.72 g of P and 21.28 g of Cl?
Answer:
PCI5
Explanation:
what is the orbital diagram for phosphorus
Look around and write down two or three examples of matter and energy that you observe.
Examples of matter include a cup of coffee and the air we breathe, while energy is seen as sunlight shining through a window. Matter consists of substances that have mass and occupy space, and energy is the capacity to perform work or bring about change.
Examining the world around us, we can find numerous examples of matter and energy. For instance, a cup of coffee on your desk is an example of matter, containing energy in the form of heat.
Another example of matter would be the air you breathe, which is a mixture of gases like nitrogen, oxygen, and carbon dioxide. As for energy, sunlight streaming through a window illustrates energy in the form of light and heat.
These examples help us understand that matter is anything that has mass and takes up space, while energy is the capability to do work or cause change.
Matter can exist in different states, including solid, liquid, and gas. For example, ice is water in its solid state.
When absorbing energy, this ice can melt into liquid water, exemplifying a phase change that involves energy transfer. Alternatively, water vapor condensing into liquid showcases a phase change where energy is released.
To comprehend the complexities of these transitions and the role of energy, it is vital to explore the conservation of energy, which states that energy cannot be created or destroyed, only transformed from one form to another.
Investigations in this area could include lab experiments verifying the law of conservation of energy by observing phase changes and measuring the energy involved.
Chemistry Help?
The chemical formulae of some chemical compounds are written in the first column of the table below. Each compound is soluble in water.
Imagine that a few tenths of a mole of each compound is dissolved in a liter of water. Then, write down in the third column of the table the chemical formula of the major chemical species that will be present in this solution.
Note: "major" chemical species are those present in concentrations greater than 10^-6 mol/L
C3H6(OH)2 : ?
FeI3 : ?
C3H8O : ?
1) C3H6(OH)2 : this compound must be propan-1,2-diol or propylene glycol
This is covalent compound and will not dissociate in water so the chemical speceis present will be
H2O and C3H6(OH)2
2) FeI3: this is ionic compound and will dissociate to form
FeI3 ---> Fe+3 + 3I-
chemical species present : H2O , Fe^+3 and I^-1
3) C3H8O : this must be propanol again it will remain undissociated
so the chemical species present will be HeO and C3H6(OH)2
(1) The chemical species present will be [tex]\boxed{{{\text{H}}_{\text{2}}}{\text{O}}}[/tex] and [tex]\boxed{{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{{\left( {{\text{OH}}} \right)}_{\text{2}}}}[/tex].
(2) The chemical species present will be [tex]\boxed{{\text{F}}{{\text{e}}^{{\text{3}} + }}}[/tex], [tex]\boxed{{\text{3}}{{\text{I}}^ - }}[/tex] and [tex]\boxed{{{\text{H}}_{\text{2}}}{\text{O}}}[/tex].
(3) The chemical species present will be [tex]\boxed{{{\text{H}}_{\text{2}}}{\text{O}}}[/tex] and [tex]\boxed{{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}}[/tex]. For table (refer to the image attached).
Further Explanation:
Covalent compounds are those compounds which are formed by the electron sharing between two or more non-metals. Covalent bonds involve two atoms that share electrons and reach a more stable electron configuration
Ionic compounds are those compounds formed from the ions of the species. Ions are the species that are formed due to the loss or gain of electrons. Cation forms by the loss of electrons and anion forms by the gain of electrons in a neutral atom. The ionic bond is a chemical bond between two atoms in which one atom donates its electron to another atom.
Compounds made from two elements can either have an ionic or covalent bond.
(i) If a bond is formed from a metal and a non-metal then it will be ionic.
(ii)If a bond is formed from two non-metals then it will be covalent.
Ionic reaction:
The ionic reaction is a chemical reaction in which molecules dissociate into ions in water. In ionic reaction, net charge is same on both sides.
(1) [tex]{{\mathbf{C}}_{\mathbf{3}}}{{\mathbf{H}}_{\mathbf{6}}}{\left( {{\mathbf{OH}}} \right)_{\mathbf{2}}}[/tex]
In [tex]{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\left( {{\text{OH}}} \right)_{\text{2}}}[/tex], carbon (C), oxygen(O) and hydrogen(H) are nonmetals and form covalent bonds. Therefore, [tex]{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\left( {{\text{OH}}} \right)_{\text{2}}}[/tex] is a covalent compound and will not dissociate in water. The chemical species present will be [tex]{{\text{H}}_{\text{2}}}{\text{O}}[/tex] and [tex]{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\left( {{\text{OH}}} \right)_{\text{2}}}[/tex].
(2) [tex]{\mathbf{Fe}}{{\mathbf{I}}_{\mathbf{3}}}[/tex]
In [tex]{\text{Fe}}{{\text{I}}_{\text{3}}}[/tex], Iron (Fe) is metal and iodine (I) is a nonmetal and they will form an ionic compound. Therefore, [tex]{\text{Fe}}{{\text{I}}_{\text{3}}}[/tex] is an ionic compound and will dissociate into ions in water.
The dissociation reaction of [tex]{\text{Fe}}{{\text{I}}_{\text{3}}}[/tex] into ions is as follows:
[tex]{\text{Fe}}{{\text{I}}_{\text{3}}} \to {\text{F}}{{\text{e}}^{{\text{3}} + }} + {\text{3}}{{\text{I}}^ - }[/tex]
Hence, the chemical species present will be [tex]{\text{F}}{{\text{e}}^{{\text{3}} + }}[/tex], [tex]{\text{3}}{{\text{I}}^ - }[/tex] and [tex]{{\text{H}}_{\text{2}}}{\text{O}}[/tex].
(3) [tex]{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}[/tex]
In [tex]{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}[/tex] carbon (C), oxygen (O) and hydrogen (H) are nonmetals and form covalent compound. Therefore, [tex]{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}[/tex] is a covalent compound and will not dissociate in water. The chemical species present will be [tex]{{\text{H}}_{\text{2}}}{\text{O}}[/tex] and [tex]{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}[/tex].
The table that shows the chemical species present in each compound is attached in the image.
Learn more:
1. Which molecule cannot be adequately described by a single Lewis structure/ https://brainly.com/question/6786947?
2. Whether carbon dioxide and water have the same geometry or not: https://brainly.com/question/2176581
Answer details:
Grade: High School
Subject: Chemistry
Chapter: Chemical bonding and molecular structure
Keywords: Ionic, covalent, metal, nonmetal, water, ions, dissociation, C3H8O, FeI3, and C3H6(OH)2.
Determine the number of moles of compound in each of the following samples.?
4.50g H2O
471.6g Ba(OH)2
129.68g Fe3(PO4)2
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
For 1: 4.50 g of waterGiven mass of water = 4.50 g
Molar mass of water = 18 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }H_2O=\frac{4.50g}{18g/mol}=0.25mol[/tex]
Hence, the moles of given amount of water is 0.25 moles.
For 2: 471.6 g of barium hydroxideGiven mass of barium hydroxide = 471.6 g
Molar mass of barium hydroxide = 171.34 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }Ba(OH)_2=\frac{471.6g}{171.34g/mol}=2.75mol[/tex]
Hence, the moles of given amount of barium hydroxide is 2.75 moles.
For 3: 129.68 g of iron phosphateGiven mass of iron phosphate = 129.68 g
Molar mass of iron phosphate = 150.82 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }Fe_3(PO_4)_2=\frac{129.68g}{150.82g/mol}=0.86mol[/tex]
Hence, the moles of given amount of iron phosphate is 0.86 moles.
sa solution is made by dissolving 26.42 g of (NH4)2SO4 in enough H2O to make 50.00 mL of solution. what is the molarity of the solution
Molarity is a measure of the concentration of solute in a solution
c = n ÷V
c - concentration of solute,
n - number of moles of solute
V - volume of solution
We know:
V = 50.00 mL = 0.05 L
c = ?
n = ?
Let's calculate concentration:
c = m/(V * Mr)
The wavelength of a certain beam of light was [tex]3.52 x 10^-^7[/tex].
Calculate how much energy this light has.
What corresponds to a pressure of 1.23atm
Which of the answer choices accurately describes a trend that occurs when moving left to right across periods?
(Select all that apply.)
reactivity increases
atomic radius increases
atomic mass increases
valence electrons decrease
Moving left to right across a period on the periodic table, atomic radius decreases due to a stronger nuclear pull on electrons, while atomic mass increases because of the addition of protons and neutrons.
Two key factors affecting these trends include the increase of the atomic number (Z) and the effective nuclear charge felt by valence electrons. As a result, several trends can be observed:
Reactivity does not uniformly increase; it typically decreases for metals and increases for nonmetals.
Atomic radius decreases due to the increasing effective nuclear charge.
Atomic mass increases because elements have more protons, neutrons, and electrons.
Valence electrons generally increase, not decrease, as we add more electrons to fill the outermost shell.
When considering the provided trends, atomic radius decreasing and atomic mass increasing are trends that accurately describe what happens when moving left to right across a period. The atomic radius decreases mainly because a greater nuclear charge exerts a stronger pull on the electrons, drawing them closer to the nucleus. As the atomic mass increases, this is because protons and neutrons are being added to the nucleus as you move across the period. While reactivity varies depending on the type of elements (metals or nonmetals), we know that valence electrons actually increase as we move across a period, which is contrary to one of the listed answer choices.
Wind is caused by which type of heat transfer? Radiation/conduction/or convection
Wind is primarily created by the process of convection, which is the macroscopic movement of air due to differences in temperature. Warm air rises and cool air sinks, leading to the movement of air known as wind. Conduction and radiation, although also types of heat transfer, do not predominantly contribute to the formation of wind.
Explanation:Wind is primarily caused by convection, which is one of the three types of heat transfer, including conduction and radiation. In the context of our atmosphere, convection is the movement of layers of air due to differences in temperature.
Essentially, warm air, being lighter, rises and cool air, being heavier, sinks. This continuous cycle of heating, rising, cooling and falling gives rise to winds, in an effort to equalize global temperatures. An example of this heat transfer can be seen in weather systems. The movement of air mass creating winds is a product of such convection currents.
It's important to differentiate between this and the other types of heat transfer. For instance, conduction is heat transfer through direct contact of two objects, while radiation is heat transfer through electromagnetic waves, neither of which primarily contributes to the creation of wind.
Learn more about Convection here:https://brainly.com/question/4138428
#SPJ12
what is the main energy conversion that occurs when you plug in a lamp
Answer:
Electric energy conservation which converts into heat and light
Explanation:
The transformation of energy from one form energy into another form, and throughout this conversion, the energy that we give to a device will comes out. However, the energy that is given may or may not coming out in the required form.
For example, we plug in a lump means we give an electrical energy into a lamp and the lamp produces light, but we also get heat energy from the lamp(it is the form of energy which is undesirable coming from a lamp).
Why does ln(1/2) = -ln(2) please explain mechanic to get to this solution ...?
When glucose is completely oxidized with excess oxygen what are the products?
The products of the oxidation of glucose with an excess of oxygen are carbon dioxide and water.
What is the combustion reaction?A combustion reaction can be defined as a reaction that produces heat and occurs at an elevated temperature. It is an exothermic reaction, a redox chemical reaction that occurs between a fuel (hydrocarbon) and oxygen in the atmosphere.
Oxygen is an essential component for combustion because combustion cannot take place in the absence of oxygen. Complete combustion occurs when hydrocarbon burns fully to form water, carbon dioxide, and heat.
The burning of wood is also combustion where the carbon present in wood reacts with oxygen gas in the air to liberate heat and form gaseous products.
During the combustion of glucose reacts with an excess of oxygen gas to give six molecules of carbon dioxide and six molecules of water.
[tex]C_6H_{12}O_6 + 6O_2 \longrightarrow \; 6CO_2 + 6H_2O[/tex]
Learn more about combustion reaction, here:
brainly.com/question/12172040
#SPJ6
Which is the second step in the dissolving process?
The solute is mixed with the solvent.
The solute ions are carried into the solution.
The solvent molecules surround the solute particles.
The solvent molecules are attracted to the surface of the solute particles.
Answer : The correct option is, The solvent molecules surround the solute particles.
Explanation :
Dissolving process : It is defined as the process in which solute particles interact with solvent molecules.
When solute particles comes in contact with the solvent particles, firstly the solute particles break down into ions and this result in the Lattice energy of the solute particles.
When solute particles break down, it gets surrounded with the solvent particles and it results in the Hydration enthalpy of the particles.
Hence, the second step of dissolving process is when solvent molecules surround the solute molecules.
Answer:
c
Explanation:
the answer befor me is corect
Tissues combine to form Blank Space __________.
A.organisms
B.organs
C.organ systems
D.cells
what is a fusion reaction
Which of the following two cycles are the most closely related in their role in sustaining life?
a. carbon and nitrogen
b. water and nitrogen
c. carbon and oxygen
d. nitrogen and phosphorus please select the best answer from the choices provided a b c d
Answer: d. nitrogen and phosphorus
Nitrogen and phosphorus are important component of the genetic material present in the living organism, required for the expression of genes to perform a desire function in the living organisms. Both nitrogen and phosphorus are chief ingredients of the fertilizers required for the plant growth. Hence, nitrogen and phosphorous are two cycles that are most closely related in their role in sustaining life.
Which is a characteristic of a metal?
Metal are good conductor of heat and electricity. They have lusture, hard and they are ductile and malleable.
What are metals?Metals are good conductors of heat and electricity. The some of the characteristic of metal are:
Luster: Metals, such as gold, silver, and copper, have the ability to reflect light from their surface.
Metals that are malleable can endure hammering and be formed into thin foil-like sheets.
High melting and boiling points are characteristics of metals. The highest melting and boiling points are found in tungsten, whereas mercury has the lowest. Low melting points are also found for sodium and potassium.
Therefore, Metal are good conductor of heat and electricity. They have lusture, hard and they are ductile and malleable.
To learn more about metals, refer to the link:
https://brainly.com/question/28650063
#SPJ2
One of the isotopes of sulfur is represented as sulfur-35 or S-35. What does the number 35 signify?
Final answer:
The number 35 in sulfur-35 represents the mass number of the isotope, which is the total number of protons and neutrons in the nucleus. Sulfur, with atomic number 16, has 19 neutrons in this isotope.
Explanation:
The number 35 in the isotope sulfur-35 or S-35 signifies the mass number of the isotope. The mass number is the sum of the number of protons and neutrons in an atom's nucleus. Sulfur's atomic number is 16, meaning it has 16 protons. To find the number of neutrons in sulfur-35, we subtract the atomic number from the mass number, yielding 35 - 16 = 19 neutrons. Sulfur has several isotopes, including sulfur-32, sulfur-33, sulfur-34, and sulfur-36, with varying neutron numbers and natural abundances. Sulfur-35 is a less common isotope and is not found in significant abundance.
Which of the following molecules has correctly labeled bond dipoles?
The bond dipole moment determines the molecular polarity of diatomic molecules. Homonuclear diatomic molecules have no difference in electronegativity and therefore have a dipole moment of zero. Heteronuclear molecules have a small dipole moment, while molecules with a larger electronegativity difference have a larger dipole moment.
Explanation:For diatomic molecules, there is only one bond, so its bond dipole moment determines the molecular polarity. Homonuclear diatomic molecules such as Br2 and N₂ have no difference in electronegativity, so their dipole moment is zero. For heteronuclear molecules such as CO, there is a small dipole moment. For HF, there is a larger dipole moment because there is a larger difference in electronegativity.
Learn more about Bond Dipole Moment here:https://brainly.com/question/32247217
#SPJ12
Does acetylene, C2H2 have a linear shape and the bond angle of 180º?