The net force is 27 n
Answer: 91N down
Explanation:
This is a measure of resistance to motion, by an object.
Inertia is the physical property that describes an object's resistance to changes in motion, related to its inertial mass.
The measure of resistance to motion by an object is often referred to in Physics as inertia. Inertia is the property of an object that quantifies how much it resists a change in its state of motion. It is directly related to an object's inertial mass, which is a numerical measure of this resistance. When a force is applied to an object, the inertial mass determines how difficult it is to change the object's motion, whether the object is at rest or in motion.
In more detailed terms, rotational inertia (symbolized as I) is the resistance of an object to changes in its angular velocity. In electrical terms, resistance, commonly measured in ohms (Ω), is a measure of the opposition that a piece of wire, for example, offers to the flow of electricity. Both inertia and electrical resistance are foundational concepts in Physics that deal with how an object resists changes imposed upon it, either in terms of motion or electric current.
In summary, concepts such as inertia, inertial mass, and resistance are essential to understanding the motion of objects and the flow of electric current in physical systems. These concepts are also critical for measurements, which include figures like the kilogram for mass or ohms for electrical resistance.
What are the directions of movement for the Sagittarius, frontal, transverse planes ?
Answer:
Squats involve flexion (forward motion) and extension (backward on the way up), so would fit into the sagittal plane. Frontal plane motion would include leaning from left to right as in sidebends and lateral raises, or perhaps you might picture jumping jacks for a good image of movement along the frontal plane.
The Sagittarius plane, or sagittal plane, movements occur side to side, frontal (coronal) plane movements happen front to back, and transverse plane movements are rotational, involving the upper and lower sections of the body. An MRI scanner moves in corresponding directions to produce images in these planes.
Explanation:The movements associated with the sagittal plane, frontal plane (coronal plane), and transverse plane are crucial in anatomical and clinical settings such as MRI scanning, which uses these planes to create sectional images of the body.
The Sagittarius plane, or more accurately referred to as the sagittal plane, is a vertical plane that divides the body into right and left portions. An MRI scanner would move along the medial-lateral axis (side to side) to produce images in the sagittal plane. Flexion and extension movements, such as bending and straightening of the joints, occur within this plane.
The frontal plane, also known as the coronal plane, splits the body into front (anterior) and back (posterior) sections. To capture images in the frontal plane, an MRI scanner would need to move in an anterior-posterior direction (front to back).
The transverse plane divides the body into upper and lower parts, cutting across the long axis at a right angle to both the sagittal and frontal planes. Rotational movements, like rotating the head or the trunk of the body, take place in this plane.
If you need 40.0 Nm of torque in order to loosen a nut on a wn
need 40.0 Nm of torque in order to loosen a nut on a wheel and a mechanic has a
maximum force of 133 N, how far from the nut must the mechanic apply the force
loosen it?
Answer:
0.301 m
Explanation:
Torque = Force × Radius
τ = Fr
40.0 Nm = 133 N × r
r = 0.301 m
The mechanic must apply the force 0.301 m from the nut.
All the chemical activities within a living thing are called, what?
Metabolism is the answer
What is one common way that a charge can accumulate on a object?
Answer:
Friction
Explanation:
Friction is rubbing two objects together. When this happens electrons from one object goes to the other. When one object loses electrons, it will have more protons, so it will be positively charged. When one object gains electrons it becomes negatively charged.
This is what happens when you rub a rubber balloon on your hair, or even on the wall. Because one will be negatively charged and the other positive, the objects then attract each other and they stick together, like what happens when you rub the balloon on your hair, you hair will stick to the balloon, or vice-versa.
What is the centripetal acceleration of a small laboratory centrifuge in which the tip of the test tube is moving at 19.0 meters/second in a circle with a radius of 10.0 centimeters? A. 1.82 × 102 meters/second2 B. 3.61 × 103 meters/second2 C. 5.64 × 103 meters/second2 D. 2.49 × 103 meters/second2 E. 1.18 × 103 meters/second2
Answer:[tex]3.61(10)^{3} \frac{m}{s^{2}}[/tex]
The centripetal acceleration [tex]a_{c}[/tex] of an object moving in a uniform circular path is given by the following equation:
[tex]a_{c}=\frac{V^{2}}{r}[/tex]
Where:
[tex]V=19m/s[/tex] is the velocity
[tex]r=10cm=0.1m[/tex] is the radius of the circle
[tex]a_{c}=\frac{(19m/s)^{2}}{0.1m}[/tex]
[tex]a_{c}=3610m/s^{2}=3.61(10)^{3}m/s^{2} [/tex]
A coffee maker uses 7 amps of current and 110 volts.
1. How much power does it use?
117 watts
770 watts
16 watts
103 watts
Power=Amperage *Voltage
P=I*V
7 amps*110 volts
770 watts
Answer: second choice