Here's the polynomial function representing the area of the remaining portion of the square:
A(x) = 9 - 4x + x^2
1. **Initial area:** The original square has a side length of 3 inches, so its initial area is 3 * 3 = 9 square inches.
2. **Removing squares:** When small squares of side length x are cut out from each corner, the remaining shape becomes a smaller square with a side length of (3 - 2x) inches.
3. **New area:** The area of this smaller square is (3 - 2x) * (3 - 2x) = 9 - 6x + 4x^2 = 4x^2 - 6x + 9.
4. **Simplifying:** We can rearrange this expression to get a simpler polynomial function: A(x) = 9 - 4x + x^2.
Therefore, A(x) = 9 - 4x + x^2 represents the area of the remaining portion of the square after the small squares are cut out, as a function of the side length x of the removed squares.
An experimenter conducted a two-tailed hypothesis test on a set of data and obtained a p-value of 0.44. If the experimenter had conducted a one-tailed test on the same set of data, which of the following is true about the possible p-value(s) that the experimenter could have obtained? A) The only possible p-value is 0.44. B) The only possible p-value is 0.88. C) The possible p-values are 0.22 and 0.78. D) The possible p-values are 0.22 and 0.88.
Answer:
Correct option is (C).
The possible value of the p-value for a one-tailed test are 0.22 and 0.78.
Step-by-step explanation:
The p-value is the probability of acquiring a result as extreme as the observed result, assuming the null hypothesis statement is true.
The p value of a test is:
Left-tailed test: [tex]P(TS<ts)[/tex]
Right-tailed test: [tex]P(TS>ts) = 1- P(TS<ts)[/tex].
Here,
TS = Test statistic
ts = computed value of the test statistic.
The two-tailed p-value is: [tex]2P(TS<ts)[/tex] or [tex]2P(TS>ts)[/tex].
The p-value of the two tailed test is, 0.44.
Compute the p-value for one-tailed test a follows:
For a left-tailed test:[tex]2P(TS<ts)=0.44\\P(TS<ts)=\frac{0.44}{2}\\ =0.22[/tex]
For a right-tailed test:[tex]P(TS>ts) = 1- P(TS<ts)\\=1-0.22\\=0.78[/tex]
Thus, the possible value of the p-value for a one-tailed test are 0.22 and 0.78.
The correct option is (C).
Given a p-value of 0.44 from a two-tailed test, the equivalent one-tailed test would yield a p-value of 0.22. Out of the provided choices, option C is closest to the correct interpretation.
Explanation:The question presented is about the computation of the p-value in a one-tailed test, given the p-value from a two-tailed test. A p-value essentially indicates the probability that you would obtain the observed data, or data more extreme if the null hypothesis is true. In this instance, the experimenter has a p-value of 0.44 from a two-tailed test.
When converting this to a one-tailed test, the p-value would effectively be halved. Therefore, if they conducted a one-tailed test on the same data, the p-value would be 0.22 (i.e., 0.44/2) in the direction specified by the alternative hypothesis. Thus, between the provided options, none are perfectly correct, but option C) 'The possible p-values are 0.22 and 0.78.' is closest to the correct interpretation, with the accurate p-value being 0.22 rather than 0.78.
Learn more about p-value here:https://brainly.com/question/33325466
#SPJ3
The interquartile range tells us how much space the _____ of the data occupy.
Answer:
middle 50%
Step-by-step explanation:
Interquartile Range (IQR). Tells us how much space the middle 50% of the data occupy.
please help me I really need help
Answer:
both are done
look at picture
1. 13/36
2. 3/16
You go shopping and buy 3 new shirts and 2 pairs of pants for $29.75. Your friend buys 4 shirts and 3 pairs of pants for 42.00. How much did one shirt cost?
Answer:
$5.25
Step-by-step explanation:
The two purchases can be described by the equations ...
3s +2p = 29.75
4s +3p = 42.00
If you multiply the first equation by 3 and subtract 2 times the second equation, the cost of a shirt pops out.
3(3s +2p) -2(4s +3p) = 3(29.75) -2(42.00)
9s +6p -8s -6p = 89.25 -84.00 . . . . . . . eliminate parentheses
s = 5.25 . . . . . . . . . . collect terms
One shirt costs $5.25.
A department store is holding a drawing to give away free shopping sprees. There are customers who have entered the drawing: live in the town of Gaston, live in Pike, and live in Wells. Two winners will be selected at random. What is the probability that both winners live in Wells?
Answer:
The probability of selecting two winners from Wells is, [tex]\frac{z(z-1)}{(x+y+z)(x+y+z-1)}[/tex]
Step-by-step explanation:
Let us assume that x people entered the drawing were from Gaston, y people entered the drawing were from Pike and z people entered the drawing were from Wells.
Total number of people who entered the drawing is, N = x + y + z.
It is provided that 2 winners are selected at random.
The event of selecting the first and second winner are not related, i.e. they are independent.
Then the first winner can be selected from Wells in z ways.
And the second winner can be selected, also from Wells in (z - 1) ways.
The probability of selecting both the winners from Wells is:
[tex]P(Both\ the\ winners\ were\ from\ Wells)=\frac{z}{x+y+x}\times \frac{z-1}{x+y+z-1} =\frac{z(z-1)}{(x+y+z)(x+y+z-1)}[/tex]
Thus, the probability of selecting two winners from Wells is, [tex]\frac{z(z-1)}{(x+y+z)(x+y+z-1)}[/tex].
NEED HELP ASAP Need someone to explain how to do this
Answer:
Oh cool! The answer is 90 since a and c or parallel, b cuts through them perpendicularly, forming a right angle.
Step-by-step explanation:
In reference to the diagram below, Juan claims that the area of circle B is twice the area of circle A since it's radius is twice as big.
Circle A radius = 2
Circle B radius = 4
Explain why Juan is mistaken in his conclusion about the area of circle B. In writing your response, be sure to explain what happens to the radius when it is squared. Explain the steps in finding the area of a circle.
Answer:
circle b
Step-by-step explanation:
Answer:
Step-by-step explanation:
amosc: marcos62280 ( ;
Jerome is painting a rectangular toolbox that is 20 inches by 10 inches by 8 inches. A tube of paint covers 300 square inches. What is the surface area of the toolbox?
Answer:
880 in³
Step-by-step explanation:
L = 20, W = 10, H = 8
2(h × W) + 2(h × L) + 2(W × L)
= 2(8*10) + 2(8*20) + 2(10*20)
= 2(80) + 2(160) + 2(200)
= 160 + 320 + 400
= 880 in³
Consider the following If statement, which is syntactically correct but uses poor style and indentation: if (x >= y) if (y > 0) x = x * y; else if (y < 4) x = x - y; Assume that x and y are int variables containing the values 9 and 3, respectively, before execution of the above statement. After execution of the statement, what value will x contain?
Answer:
27
Step-by-step explanation:
int x = 9;
int y = 3;
if (x >= y)
if (y > 0)
x = x * y;
else if (y < 4)
x = x - y;
First, the first if statement check for the value of x>=y which is true. The another if-statement check if y>0, which is true and it execute the statement x = x * y that is x = 9 * 3 and x = 27.
The else-if block is not executed because the if-statement attached to it has been executed already.
At a basketball game a vendor sold a combined total of 146 sodas and hotdogs the number of sodas was 36 more than the number of hotdogs sold find the number sodas I have a basketball game a vendor sold a combined total of 146 sodas and hotdogs the number of Sotos was 36 more than the number of hotdogs sold find the number Sotos sold and the number of hotdogs sold
Answer:
hot dogs sold=110
sodas sold=36
Step-by-step explanation:
146-36=110
110+36=146
Answer:91 Sodas and 55 hot dogs were sold.
Step-by-step explanation:
Let x represent the number of Sodas that were sold at the basketball game.
Let y represent the number of hot dogs that were sold at the basketball game.
At the basketball game a vendor sold a combined total of 146 sodas and hotdogs. This means that
x + y = 146 - - - - - - - - - - - - - - -1
The number of Sodas was 36 more than the number of hotdogs sold. This means that
x = y + 36
Substituting x = y + 36 into equation 1, it becomes
y + 36 + y = 146
2y + 36 = 146
2y = 146 - 36 = 110
y = 110/2 = 55
x = y + 36 = 55 + 36
x = 91
In a recent poll,only 8% of the people surveyed were againt a new bill making it mandatory to recycle. How many of he 75 people surveyed were against the bill?
Answer:
There were 6 people against the bill.
Step-by-step explanation:
Given:
In a recent poll,only 8% of the people surveyed were against a new bill making it mandatory to recycle.
Now, to find of the 75 people surveyed were against the bill.
Total number of people = 75.
Percent of the people surveyed were against the bill = 8%.
Now, to get the number of people who were against the bill:
8% of 75
[tex]=\frac{8}{100}\times 75[/tex]
[tex]=0.08\times 75[/tex]
[tex]=6.[/tex]
Therefore, there were 6 people against the bill.
Mr wells drew a plan for a rectangle dog run three of the vertices are (2 1/3, 7 1/2), (12, 7 1/2), and (12, 1) what are the coordinates of the fourth vertex
Answer:
Step-by-step explanation:
let 4th fourth vertex be D (x,y)
A(2 1/3,7 1/2),B(12, 7 1/2),C(12,1)
or A(7/3,15/2),B(12,15/2),C(12,1)
Mid-point of diagonal AC is P((7/3+12)/2,(15/2+1))
Mid -point of diagonal BD is P((12+x)/2,(15/2+y)/2)
(Because mid -point of diagonal is same.)
(12+x)/2=(7/3+12)/2
12+x=7/3+12
x=7/3
(15/2+1)/2=(15/2+y)/2
15/2+1=15/2+y
y=1
so fourth vertex is (7/3,1)
To find the coordinates of the fourth vertex of the rectangle, we use the information provided about the positions of the third vertex and the Car X figure. The coordinates of the fourth vertex are (13 2/3, 7 1/2) and (12, 2).
Explanation:To find the coordinates of the fourth vertex of the rectangle, we can use the fact given that the third vertex is one and two-thirds perpendicular hash marks to the right of the center top hash mark. Since the center top hash mark is at (12, 7 1/2), the third vertex is at (12 + 1 2/3, 7 1/2), which simplifies to (13 2/3, 7 1/2).
Now, we need to find the position of the fourth vertex. According to the given information, the fourth vertex is in the same position as the Car X figure, which means it is one perpendicular hash mark above the center right hash mark. Since the center right hash mark is at (12, 1), the fourth vertex is at (12, 1 + 1), which simplifies to (12, 2).
Therefore, the coordinates of the fourth vertex are (13 2/3, 7 1/2) and (12, 2).
Learn more about Coordinates of the Fourth Vertex here:https://brainly.com/question/8247292
#SPJ2
what has a head, a tail, is brown, and has no legs
Answer:
A penny
Step-by-step explanation:
a penny
_______
_______
A youth club receives a discount on each pizza purchased for a party. The original price of each pizza is x dollars. The club leader purchases 8 pizzas for a total of (8x-32) dollars. Factor the expression
Answer:
The factored form is [tex](8x-32)=8(x-4)[/tex]
Step-by-step explanation:
Given : A youth club receives a discount on each pizza purchased for a party. The original price of each pizza is x dollars. The club leader purchases 8 pizzas for a total of (8x-32) dollars.
To find : Factor the expression ?
Solution :
The original price of each pizza is x dollars.
The club leader purchases 8 pizzas for a total of [tex](8x-32)[/tex] dollars.
To factor the expression we have to take common term out.
So, [tex]8x=8\times x[/tex]
[tex]32=8\times 4[/tex]
8 is common take out,
[tex](8x-32)=8(x-4)[/tex]
Factors are 8 and (x-4).
Therefore, the factored form is [tex](8x-32)=8(x-4)[/tex]
To factor the expression (8x - 32), we take out the common factor of 8, resulting in the factored form of 8(x - 4), indicating a $4 discount per pizza.
Explanation:The question is asking to factor the expression, which represents the total cost for purchasing 8 pizzas after receiving a discount from the original price x dollars per pizza. The expression given is (8x - 32) dollars.
To factor this expression, we look for a common factor in both terms which is 8.
Factoring out the 8, we get 8(x - 4). This means the club receives a discount of $4 per pizza since (8x - 32) factors into 8 times (x - 4).
Jose is training for a half -marathon .Each week he runs x miles per day for 5 days .For 3 days of the week he runs at a speed of 8 minutes per mile .For 2 days he runs 7-minute miles. Write an expression to represent the amount of time,in minutes,that jose runs in 4 weeks
Answer:
152x miles
Step-by-step explanation:
Jose runs x miles per day each week for 5 days.
For 3 days of the week he runs at a speed of 8 minutes per mile. So we have
3*8*x = 24x
For 2 days he runs 7 minutes per miles. We have
2*7*x = 14x
in one week, he runs 24x + 14x = 38x
In 4 weeks, he runs
4*38x = 152x miles
Chris pays a fee if her balance falls below $10 on the statement data. Prior to the statement date, her balance was -$3.46. Then Chris made a deposit, d, in ample time, so she did not have to pay a fee. Write and solve an inequality to represent this situation. P
Answer:
The solution of the inequality required for the situation is d ≥ $13.46.
Step-by-step explanation:
i) the minimum deposit is $10.
ii) the balance before the statement is $-3.46
iii) a deposit d is made so that the fee did not have to be made
iv) therefore d + (-3.46) ≥ 10
d - 3.46 ≥ 10
therefore d ≥ 10 + 3.46
therefore d ≥ $13.46
Chris would have to deposit at least $13.46 into her account in order to avoid being charged a fee. This amount is determined by setting up and solving the inequality -3.46 + d ≥ 10, which represents her account balance.
Explanation:In this situation, Chris is trying to avoid a fee by maintaining a balance of at least $10 in her account. Prior to making a deposit, her account balance is -$3.46. Thus, we need to find out the minimal deposit, d, that she needs to make in order to bring her balance up to $10. To do this, we can set up the following inequality:
-3.46 + d ≥ 10
To solve the inequality for d, we simply add 3.46 to both sides of the inequality:
d ≥ 13.46
Therefore, Chris must make a deposit of at least $13.46 to avoid incurring the fee.
Learn more about Inequality Solving here:https://brainly.com/question/32125218
#SPJ3
What is the range of g(x) = 3|x − 1| − 1? A. (-∞, 1] B. [-1, ∞) C. [1, ∞) D. (-∞, ∞)
Answer:
B. [-1, ∞).
Step-by-step explanation:
g(x) = 3|x − 1| − 1
When x = 1 g(x) = 3(0) - 1 = -1.
As all negative vales of x will give positive values of |x - 1| then g(x) = -1 is its minimum value. The graph will be shaped like a letter V with the vertex at (1,-1).
Therefore the range is [-1, ∞).
The range of g(x)=3|x-1|-1 is [-1,∞) i.e. option B is correct.
What is range?The set of all the outputs of a function is known as the range of the function .
According to the given question
we have,
A function, g(x) = 3|x-1| - 1
Lets, find the value of g(x) for the different values of "x"
when,
x=0 ⇒ g(0) = -1
x=1 ⇒ g(1) = -1
x=2 ⇒g(2) = 2
Similarly, we can check for the negative values of x.
So, for all the negative values of x we will gives only positive values for g(x) and only at x=0, g(x) = -1 , which is its minimum value .
⇒ The range of given function g(x) is {-1,∞).
Hence , option B is correct.
Learn more about the range here:
https://brainly.com/question/17553524
#SPJ2
Stephanie is saving money to buy a new computer. So far she has saved $200. Write an inequality to show how much she needs to save each month for the next year so she has at least $1200 to spend on the computer,then solve the inequality.
Answer:
Step-by-step explanation:
Let x represent the amount that she needs to save each month for the next year.
Stephanie is saving money to buy a new computer. So far she has saved $200. This means that the total amount that she would have saved in y months is
200 + xy
Since there are 12 months in a year,
an inequality to show how much she needs to save each month for the next year so she has at least $1200 to spend on the computer is
200 + 12x ≥ 1200
12x ≥ 1200 - 200
12x ≥ 1000
x ≥ 1000/12
x ≥ 83.33
What information should be entered in item 16, "Destination Aerodrome," for an IFR flight with an intended stopover of 30 minutes?What information should be entered in item 16, "Destination Aerodrome," for an IFR flight with an intended stopover of 30 minutes?
Answer:
The destination airport identifier code.
Step-by-step explanation:
What information should be entered in item 16, "Destination Aerodrome," for an IFR flight with an intended stopover of 30 minutes?What information should be entered in item 16, "Destination Aerodrome," for an IFR flight with an intended stopover of 30 minutes?
A destination identifier code should be entered.
if no stopover for more than 60 minutes is expected, enter ICAO four letter identifier in item 16 of the flight plan. and indicate when to stopover
Item 16 on an IFR flight plan is used to indicate the destination aerodrome, which is the airport where the aircraft is planning to land. For an IFR flight with an intended stopover of 30 minutes, you would enter the ICAO code or the three-let...
Explanation:Item 16 on an IFR flight plan is used to indicate the destination aerodrome, which is the airport where the aircraft is planning to land.
For an IFR flight with an intended stopover of 30 minutes, you would enter the ICAO code or the three-letter identifier for the destination aerodrome in item 16.
In this case, you would enter the ICAO code or three-letter identifier for the airport where you will land after the intended stopover, and not the stopover airport itself.
-------100 POINTS------
Complete the proof of the Pythagorean theorem.
The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse's length equals the sum of the squares of the other two sides' lengths. This can be proven via the areas of squares with sides corresponding to the triangle's sides, demonstrating that a²+b²=c².
Explanation:The Pythagorean theorem is a fundamental principle in geometry, named after the Greek mathematician Pythagoras. It states that in a right-angled triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. This can be written as: a²+b²=c².
To prove this, we can begin with a right-angled triangle with sides a, b, and hypotenuse c. If we square the length of c (i.e., c²), this is equivalent to the area of a square with side length c. Similarly, a² and b² represent the areas of squares with side lengths a and b, respectively.
If we add together the areas of the two smaller squares (a²+b²), this equals the area of the larger square (c²). This proves the Pythagorean theorem. For instance, consider a right triangle with sides of lengths 3, 4, and 5. The squares would have areas 9 and 16, which add up to 25 - the area of the square on the hypotenuse.
Learn more about Pythagorean theorem here:https://brainly.com/question/28361847
#SPJ12
The Pythagorean Theorem states that a² + b² = c². A step-by-step proof involves constructing a square with the right-angled triangle and equating the areas. This logical deduction confirms the theorem's correctness.
The Pythagorean Theorem is one of the fundamental results in Geometry, which states that in a right-angled triangle, the square of the length of the hypotenuse (c) is equal to the sum of the squares of the lengths of the other two sides (a and b): a² + b² = c². Here is a step-by-step proof:
Construct a right-angled triangle with legs a and b and hypotenuse c.Construct a square with side a + b. Within this square, place four identical right-angled triangles, each having sides a, b, and c.The four triangles will leave a smaller square in the middle with side c.The area of the larger square is (a + b)², which can be expanded as a² + 2ab + b².The area of the larger square is also the sum of the areas of the four triangles and the smaller square in the center, which is 4 (1/2ab) + c² simplifying to 2ab + c².Setting the two expressions for the area of the larger square equal gives: a² + 2ab + b² = 2ab + c².By subtracting 2ab from both sides, we get the Pythagorean Theorem: a² + b² = c².Thus, we have proven that the theorem holds true using logical deductions.
If Alex and Brandon work together they will clean the school in 15 hours. Working alone, Brandon can finish the same job in 20 hours. How long will it take Alex to do the job by himself? PLEASE HELP ME PRETTY PLEASE
Answer:
It takes 60 hours for Alex to complete the job alone.
Step-by-step explanation:
Given:
Number of hours Brandon alone can finish job =20 hours
Let the number of hours required by Alex alone to complete the job be 'x' hrs.
We need to find the number of hours required by Alex alone to complete the job.
Solution:
Now we can say that;
Rate at which Alex can complete the job alone = [tex]\frac1x[/tex] job/hour
Rate at which Brandon can complete the job alone = [tex]\frac{1}{20}[/tex] job /hour
Also Given:
Number of hours required for both to complete the job = 15
So rate of both complete the job = [tex]\frac{1}{15}[/tex] job/hour
Now we can say that;
rate of both complete the job is equal to sum of Rate at which Alex can complete the job alone and Rate at which Brandon can complete the job alone.
framing in equation form we get;
[tex]\frac1x+\frac{1}{20}=\frac{1}{15}[/tex]
Now taking LCM for making the denominators same we get;
[tex]\frac{20}{20x}+\frac{x}{20x}=\frac{1}{15}[/tex]
Now denominators are common so we will solve the numerators.
[tex]\frac{20+x}{20x}=\frac{1}{15}[/tex]
Now Using cross multiplication we get;
[tex]15(20+x)=20x[/tex]
Applying Distributive property we get;
[tex]15\times20+15\times x =20x\\\\300+15x=20x[/tex]
Combining like terms we get;
[tex]300=20x-15x\\\\300=5x[/tex]
Now Dividing both side by 5 we get;
[tex]\frac{300}{5}=\frac{5x}{5}\\\\x=60\ hrs[/tex]
Hence It takes 60 hours for Alex to complete the job alone.
To find how long it will take Alex to complete the job by himself, we first establish the individual work rates of Alex and Brandon. We know the combined work rate (1/15 jobs per hour) and Brandon's work rate (1/20 jobs per hour). Alex's work rate is thus 1/15 - 1/20 = 1/60 jobs per hour, which means it will take him 60 hours to do the job alone.
Explanation:This question requires knowledge of work rate calculations in Mathematics. The scenario involves two workers, Alex and Brandon, who can complete a cleaning task together in 15 hours. It's also given that Brandon can do the job alone in 20 hours, and we need to calculate how long it would take for Alex to complete the job by himself.
First, let's define their rates of work. If Brandon can complete the job in 20 hours, his work rate is 1 job per 20 hours, or 1/20 jobs per hour. Similarly, if Alex and Brandon together can complete the job in 15 hours, their combined work rate is 1 job per 15 hours, or 1/15 jobs per hour.
To find Alex's work rate, we subtract Brandon's work rate from the combined work rate. Thus, Alex's work rate is 1/15 - 1/20 = 1/60 jobs per hour. This means it would take Alex 60 hours to complete the job on his own.
Learn more about Work Rate here:https://brainly.com/question/14305692
#SPJ12
A random sample of the actual weight of 5-lb bags of mulch produces a mean of 4.963 lb and a standard deviation of 0.067 lb. If n=50, which of the following will give a 95% confidence interval for the mean weight (in pounds) of the mulch produced by this company?
A) 4.963±0.016.
B) 4.963±0.019.
C) 4.963±0.067.
D) 4.963±0.009.
E) None of the above.
Answer: B) 4.963±0.019.
Step-by-step explanation:
Confidence interval for population mean ( when population standard deviation is not given) is given by :-
[tex]\overline{x}\pm t^*\dfrac{s}{\sqrt{n}}[/tex]
, where [tex]\overline{x}[/tex] = Sample mean
n= Sample size
s= sample standard deviation
t* = critical t-value.
As per given:
n= 50
Degree of freedom = n-1 =49
[tex]\overline{x}= 4.963\ lb[/tex]
s= 0.067 lb
For df = 49 and significance level of 0.05 , the critical two-tailed t-value ( from t-distribution table) is 2.010.
Now , substitute all values in the formula , we get
[tex]4.963\pm (2.010)\dfrac{0.067}{\sqrt{50}}\\\\ 4.963\pm (2.010)(0.0094752)\\\\ 4.963\pm0.019045152\approx4.963\pm0.019[/tex]
Hence, a 95% confidence interval for the mean weight (in pounds) of the mulch produced by this company is [tex]4.963\pm0.019[/tex].
Thus , the correct answer is B) 4.963±0.019.
Answer:
the correct answer is B) 4.963±0.019.
Step-by-step explanation:
Use the definition of a derivative to find f’(x).
f(x) = 9/x
Please show the steps. I cannot find a way to solve it in the way that is shown by the examples given around online e.t.c.
Answer:
f'(x) = [tex]-\frac{9}{x^2}[/tex]
Step-by-step explanation:
i) f(x) = 9 / x
ii) f'(x) = [tex]$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h} $ \hspace{0.2cm}[/tex]
[tex]= $\lim_{h\to 0} \frac{\frac{9}{x+h} - \frac{9}{x} }{h} = \hspace{0.1cm} $\lim_{h\to 0} \frac{9x - 9(x+h)}{hx(x+h)} $ \hspace{0.1cm} = \hspace{0.1cm}$\lim_{h\to 0} \frac{-9h}{hx(x+h)} = $\lim_{h\to 0} \frac{-h}{x(x+h)} = \frac{-9}{x^2}$[/tex]
A 2956 kg car starts from rest at the top of a driveway of length 6 m that is sloped at 35◦ with the horizontal. An average frictional force of 3080 N impedes the motion. Find the speed of the car at the bottom of the driveway. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s.
Answer:
7.41 m/s
Step-by-step explanation:
Force of a car inclined at an angle
F=mg Sin Θ where; m = 2956 kg , g = 9.8m/s² , Θ = 35⁰
F = 2956 x 9.8 x Sin 35 = 16615.82 N
Net force due to friction = 16615.82 - 3080 = 13535.82 N
To calculate acceleration; F= Ma
13535.82 = 2956 x a
a = 4.58 m/s²
From equation of motion
[tex]V^{2} = V_{o} ^{2} + 2aS[/tex]
V² = 0 + (2 x 4.58 x 6)
V = [tex]\sqrt{54.95}[/tex]
V = 7.41 m/s
A pre-paid cell phone company charges $18.5 as a monthly access fee and $0.11 per minute of calling time. Express the monthly cost C as a function of x, the number of minutes use. What will the monthly cost be if you make 329 minutes of calls this month? $
Answer:
c=54.69
Step-by-step explanation:
so this is a two step problem
c=18.5+0.11x
we created the function
now we plug in 329 into x and solve to get the c
c=54.69
The monthly cost for pre-paid cell phone usage can be expressed as a function, C = 18.5 + 0.11x where x is the number of calling minutes. The monthly cost for making 329 minutes of calls would be $54.69.
Explanation:The pre-paid cell phone company charges a fixed monthly access fee and an additional cost per minute of calling time. Here, the monthly access fee is $18.5 and the cost per minute is $0.11. We are asked to express the monthly cost C as a function of x, the number of minutes used.
Therefore, we can write the function as C = 18.5 + 0.11x where, C represents the monthly cost and x represents the number of minutes used.
Now, if you make 329 minutes of calls this month, you can use this function to calculate the total cost. Substituting x = 329 into the function gives: C = 18.5 + 0.11 * 329 = $54.69.
Therefore, the monthly cost for making 329 minutes of calls would be $54.69.
Learn more about Function here:https://brainly.com/question/35114770
#SPJ11
A 100-inch ribbon is to be cut into three pieces. Find the length of each piece of ribbon. The length of the shortest piece of ribbon is _____ inches. Please put step by step. I’m having trouble with these and if you have a short cut teach me your ways lol
Answer: Longest piece= 52 inches, Shortest piece= 22 inches and the third piece is 26 inches
Step-by-step explanation:
Let the longest piece be A
Let the shortest piece be B
let the third piece be C
The longest piece is to be 30inches longer than the short
A=B+30
and the third piece is to be half the length of the longest piece
C=(B+30)/2
Rmbr,
A+B+C=100 Inches
from
A+B+C=100 substitute A for B+30 and C for (B+30)/2
we have,
(B+30)+B+(B+30)/ 2=100
2B+30+(B+30)/2=100
multiply through by 2
we have,
4B+60+B+30=200
5B=200-90
B=110/5
B=22
To get A
from A=B+30
A=22+30
A=52
To get C
from C=(B+30)/2
C=(22+30)/2
C=52/2
C=26
Rmbr,
Let the longest piece be A
Let the shortest piece be B
let the third piece be C
therefore, A=52 B=22 C=26
Which of the following statements would be correct to use when proving that limx→4(3x−4)=8?
a. Given 0<∣∣x−4∣∣<ϵ, then ∣∣(3x−4)−8∣∣<ϵ3.
b. Given 0<∣∣x−4∣∣<ϵ3, then ∣∣(3x−4)−8∣∣<ϵ.
c. Given 0<∣∣x−8∣∣<ϵ, then ∣∣(3x−4)−4∣∣<ϵ3.
d. Given 0<∣∣x−8∣∣<ϵ3, then ∣∣(3x−4)−4∣∣<ϵ.
e. Given 0<∣∣x−4∣∣<3ϵ, then ∣∣(3x−4)−8∣∣<ϵ.
f. Given 0<∣∣x−4∣∣<3ϵ, then ∣∣(3x−4)−8∣∣<ϵ3.
Answer:
Option c
Step-by-step explanation:
given that limit x tending to 4 of the function (3x-4) is 8
This implies for all values of x such that for epsilon >0 arbitrary small ,
[tex]||x-4||<\epsilon[/tex], we get
|f(x)-8|<3epsilon
this is equivalent to the option c.
Proof:
Consider
[tex]||x-4||<\epsilon\\3||x-4||<3\epsilon\\||3x-12||<3\epsilon\\||3x-4|-8| <3\epsilon[/tex]
Hence it follows that option C is right.
The correct statement to use when proving that limx→4(3x−4)=8 is option b: Given 0 < | x - 4 | < epsilon/3, then | (3x - 4) - 8 | < epsilon. This uses the formal definition of limit and abides the epsilon-delta parameters definition to provide the correct proof.
Explanation:To verify the given limit, we need to utilize the formal definition of a limit. This formal definition gives us a systematic method to prove a limit based on epsilon-delta parameters. The purpose is to show that as x gets closer and closer to 4 (with| x - 4 | being smaller than an arbitrary positive delta), the expression (3x-4) increasingly approaches 8 (with |(3x - 4) - 8| getting within an epsilon range).
The correct choice is: b. Given 0 < | x - 4 | < epsilon/3, then | (3x - 4) - 8 | < epsilon. In this case, 'epsilon/3' in | x - 4 | < 'epsilon/3' is the delta in the epsilon-delta definition of limit. Essentially, it captures the notion that for every epsilon > 0, there exists a delta > 0 such that 0 < | x - 4 | < delta implies | (3x - 4) - 8 | < epsilon, thereby proving the limit.
Learn more about Limit Proof here:https://brainly.com/question/35115823
#SPJ3
I'll Brainliest if possible. Please excuse the unruly handwriting I was in a bit of a hurry. The words are, find the quotient using long division.
Answer: The quotient is 6x + 2
The solution is
6x + 2 + 9/(6x² - 16x + 3)
Step-by-step explanation:
The step by step explanation for the long division method is shown in the attached photo. The remainder is 9 and the quotient is 6x + 2
See attached picture.
The final answer is the quotient plus the remainder over the divisor.
The quote that would be 6x+ 2 and the remainder would be 9/x-3
Please assist me in 6-30
Answer:
Yes to both.
Step-by-step explanation:
It is true that
[tex]\dfrac{x}{y}=1 \iff x=y[/tex]
In fact, if you know that x/y=1, just multiply both sides by y to get x=y. On the other hand, if you know that x=y (and they are not zero), you can divide both sides by y to get x/y=1.
Since the two expressions are equivalent, you can always use Phil's or Don's expression, at will.
URGENT PLZ HELP. DUE TOMORROW
Answer:
9 x⁵y⁵
Step-by-step explanation:
for a rectangle
area = length x width, (rearranging)
width = area / length
given area = 45x⁸y⁹ and length = 5x³y⁴
width = 45x⁸y⁹ / 5x³y⁴
= (45/5) ( x⁸y⁹ / x³y⁴)
= 9 ( x⁸y⁹ / x³y⁴)
= 9 ( x⁸⁻³y⁹⁻⁴ )
= 9 ( x⁵y⁵ )
= 9 x⁵y⁵