A spacecraft is in a 400-km by 600-km LEO. How long (in minutes) does it take to coast from the perigee to the apogee?

Answers

Answer 1

To solve this problem we will use Kepler's third law for which the period is defined as

[tex]T= 2\pi \sqrt{\frac{a^3}{GM}}[/tex]

The perigee altitude is the shortest distance between Earth's surface and Satellite.

The average distance of the perigee and apogee of a satellite can be defined as

[tex]a = R+\frac{r_1+r_2}{2}[/tex]

Here,

R = Radius of Earth

[tex]r_1[/tex]= Lower orbit

[tex]r_2[/tex]= Higher orbit

Replacing we have,

[tex]a = 6378.1+\frac{400+600}{2}= 6878.1km[/tex]

Time Taken to fly from perigee to apogee equals to half of orbital speed is

[tex]t = \frac{T}{2}[/tex]

[tex]t = \pi \sqrt{\frac{a^3}{GM}}[/tex]

Replacing,

[tex]t =\pi \sqrt{\frac{(6878.1*10^3)^3}{(6.67*10^{-11})(6*10^{24})}}[/tex]

[tex]t = 2832.79s[/tex]

[tex]t = \text{47min 12.8s}[/tex]

Therefore will take around to 47 min and 12.8s to coast from perigee to the apogee.

Answer 2

Final answer:

The task requires understanding of orbital mechanics and Kepler's laws to calculate the coasting time from perigee to apogee in a specific orbit, but the information provided is not sufficient for a direct calculation without additional details on velocity or using specific orbital mechanics equations.

Explanation:

The question asks about the time it takes for a spacecraft to coast from the perigee (the point in the orbit closest to Earth) to the apogee (the point in the orbit farthest from Earth) in a low Earth orbit (LEO) with altitudes of 400 km and 600 km respectively. To solve this, we would typically use Kepler's laws and orbital mechanics equations. However, the information provided does not directly enable the calculation of the coasting time without additional steps or assumptions about the spacecraft's orbit, such as its velocity, the mass of the Earth, and orbital mechanics principles that allow for the calculation of orbital period. An approximate method to find the orbital period (the total time for one complete orbit) involves using the semi-major axis of the orbit, which can be derived from the given perigee and apogee. However, without the specific velocities or applying advanced physics formulas, we can't provide an accurate answer.


Related Questions

For each of the statements below, decide which of the Maxwell equations (forstaticsituations) tells you that the statement is true. Briefly, justify your answers.

(a) There are no magnetic monopoles.
(b) There must be a scalar potential.
(c) There must be a vector potential.
(d) Charges create electric fields.2.

Answers

Answer:

(a)There are no magnetic monopoles. true

(c) There must be a vector potential. true

(d) Charges create electric fields.2. true

Explanation:

a) there are no magnetic monopoles because magnetic field is created by charges (electrons) and these electrons have dipole field so it is not possible to have magnetic dipoles, more ever Gauss's law always explained that there are not magnetic dipoles. furthermore magnetic monopoles aree caused by magnetic charges and we have electric charges.

c)vector potential is a vector field which serves as a potential for magnetic field so, the magnetic field B by Faraday and Gauss's law is also known as vector potential.

d) electric field is solely generated by charges be it static charges or moving charges if there are no charges it is not possible to have an electric field.

Measure the distance from the drop point in Brazil to the drop point in Angola. Use that number in your calculation. Given that this portion of Pangaea broke apart 200,000,000 years ago, calculate how fast South America and Africa are separating in cm/year? (Hint: Speed= Distance/Time)

Answers

To develop this point we will start by finding the approximate coordinates of the points that were connected at the time of the Pangaea between Brazil and Angola. These coordinates are presented below.

1 . Brazil - Latitude: 18 0 07’ 55.56” S Longitude: 39 0 35’ 14.50” W 2.

Angola - Latitude: 9 0 08’ 50.02” S Longitude: 13 0 02’ 32.11” E

Using a tool for calculating distances between these two points we will notice that its distance is 576,155,570.12 cm

Applying the equation given in the statement we will have to,

[tex]v = \frac{x}{t} \rightarrow v = Velocity, x = Distance, t = Time[/tex]

200,000,000 years have passed and the movement was previously found, so the speed of travel is,

[tex]v = \frac{576,155,570.12cm}{200.000.000 years}[/tex]

[tex]v = 2.88 cm/year[/tex]

Therefore the velocity is 2.88 cm per year.

What is the wavelength, in nm, of the line in the hydrogen spectrum when one n value is 3 and the other n value is 6?

Answers

Answer:

[tex]\lambda=1090nm[/tex]

Explanation:

Rydberg formula is used to calculate the wavelengths of the spectral lines of many chemical elements. For the hydrogen, is defined as:

[tex]\frac{1}{\lambda}=R_H(\frac{1}{n_1^2}-\frac{1}{n_2^2})[/tex]

Where [tex]R_H[/tex] is the Rydberg constant for hydrogen and [tex]n_1[/tex], [tex]n_2[/tex] are the lower energy state and the higher energy state, respectively.

[tex]\frac{1}{\lambda}=1.10*10^{7}m^{-1}(\frac{1}{3^2}-\frac{1}{6^2})\\\frac{1}{\lambda}=9.17*10^{5}m^{-1}\\\lambda=\frac{1}{1.09*10^{6}m^{-1}}\\\lambda=1.09*10^{-6}m*\frac{10^{9}nm}{1m}\\\lambda=1090nm[/tex]

A certain lightning bolt moves 78.3 C of charge. How many fundamental units of charge is this?

Answers

Answer:

There are [tex]4.89\times 10^{20}\ electrons[/tex] flowing in the lighting bolt.

Explanation:

Given that,

Charge on certain lighting bolt, q = 78.3 C

We need to find the number of charge flowing in that bolt. Let there are n number of electrons. It is a case of quantization of electric charge. It is given by :

q = ne

[tex]n=\dfrac{q}{e}[/tex]

e is the charge on an electron

[tex]n=\dfrac{78.3\ C}{1.6\times 10^{-19}\ C}[/tex]

[tex]n=4.89\times 10^{20}\ electrons[/tex]

So, there are [tex]4.89\times 10^{20}\ electrons[/tex] flowing in the lighting bolt.

I’m not accelerating, so the net (vertical) force on me, while I’m sitting here doing this lab is _________

Answers

Answer:

Net force is zero

Explanation:

According to the Newton's second law, the net force on the body is equal to the product of mas of body and the acceleration.

here acceleration is equal to zero so net force is also zero because mass of an object can never be zero.

Why is everything spinning? Moons, planets and stars all rotate on their axes, moons orbit planets, planets orbit stars, spiral galaxies rotate around super-massive black holes, etc. What force is causing all this spinning?

Answers

Answer:

Conservation of angular momentum

Explanation:

When the objects spread in universe after big bang, because of the tremendous force , they gained angular momentum and started to rotate. Since, then the object continue to rotate on their axis because of conservation of angular momentum. In vacuum of space there no other forces that can stop these rotation, therefore, they continue to rotate.  

Why isn't Coulomb's law valid for large conducting objects, even if they are spherically symmetrical?

Answers

Answer:

The Coulomb’s Law is as follows

[tex] \vec{F} = \frac{1}{4\pi \epsilon_0}\frac{q_1q_2}{r^2}\^r[/tex]

According to this law, the force between two charged objects can be calculated using the distance between the objects. If the objects are large, then it is not possible to determine the distance, r, between that object and the other object. Because, the edge of the object contain charges as well as the center of the object.

In that case, you need to separate the object into infinitesimal points, apply the formula to those points, then integrate over the large object to find the force between objects.

Two small plastic spheres are given positive electrical charges. When they are 16.0 cm apart, the repulsive force between them has magnitude 0.200 N.

a)What is the charge on each sphere if the two charges are equal?

b)What is the charge on each sphere if one sphere has four times the charge of the other?

Answers

The smaller charge is approximately **3.37 x 10⁻⁷ C** and the larger charge is approximately **1.35 x 10⁻⁶ C**.

These are approximate values due to rounding during calculations.

Solving for the Charges on the Spheres:

Case (a): Equal Charges

1. **Apply Coulomb's Law:** The force between two charged objects is given by Coulomb's Law:

[tex]$$F = k \cdot \frac{q_1 \cdot q_2}{r^2}$$[/tex]

where:

* F is the force (0.200 N)

* k is Coulomb's constant (8.99 x 10^9 N m²/C²)

* q₁ and q₂ are the charges on the spheres (which are equal in this case)

* r is the distance between the spheres (0.16 m)

2. **Plug in the values and solve for q₁:**

[tex]$$0.200 = 8.99 \times 10^9 \cdot \frac{q_1^2}{(0.16)^2}$$$$q_1^2 = \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9}$$$$q_1 = \sqrt{ \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9}} \approx 7.54 \times 10^{-7} \text{ C}$$[/tex]

Therefore, the charge on each sphere is approximately **7.54 x 10⁻⁷ C**.

Case (b): One Sphere has Four Times the Charge

1. **Let q₁ be the smaller charge and q₂ be the larger charge:** We know q₂ = 4q₁.

2. **Apply Coulomb's Law again:

[tex]$$0.200 = 8.99 \times 10^9 \cdot \frac{q_1 \cdot q_2}{(0.16)^2}$$$$0.200 = 8.99 \times 10^9 \cdot \frac{q_1 \cdot (4q_1)}{(0.16)^2}$$3. **Substitute and solve for q₁:**$$0.200 = 8.99 \times 10^9 \cdot \frac{16q_1^2}{(0.16)^2}$$$$q_1^2 = \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9 \cdot 16}$$$$q_1 = \sqrt{ \frac{0.200 \cdot (0.16)^2}{8.99 \times 10^9 \cdot 16}} \approx 3.37 \times 10^{-7} \text{ C}$$4. **Find the larger charge (q₂):**$$q_2 = 4q_1 = 4 \cdot (3.37 \times 10^{-7} \text{ C}[/tex]

What is the energy of light that must be absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5?

Answers

Final answer:

The energy absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 can be calculated using the Rydberg formula. The resulting value, given in Joules, can be converted to electron volts for ease of comparison.

Explanation:

The energy of light absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 can be calculated using the Rydberg formula, which describes the energies of the orbits of electrons in a hydrogen atom. The formula uses Rydberg's constant (RH = 2.18 × 10^-18 J) and the principal quantum numbers of the initial (ni) and final (nf) states:

ΔE = RH . ((1/ni²) - (1/nf²))  

In this case, ni = 3 (the initial energy level) and nf = 5 (the final energy level). Therefore, to find the energy involved in this transition, we substitute these values into the formula:

ΔE = 2.18 × 10^-18 . ((1/3²) - (1/5²))

The result you get from this calculation is in Joules, and to convert it to electron volts (eV), divide by 1.6 × 10^-19 (since 1 eV = 1.6 × 10^-19 J).

This numerical calculation will represent the energy absorbed by the atom as the electron transitions from n = 3 to n = 5, mentioned in the question.

Learn more about Energy Transition in Hydrogen Atom here:

https://brainly.com/question/29458970

#SPJ12

The end of Hubbard Glacier in Alaska advances by an average of 105 feet per year.

What is the speed of advance of the glacier in

m/s

?

Answers

Answer:

Speed of the glacier, [tex]v=1.0148\times 10^{-6}\ m/s[/tex]

Explanation:

Given that,

The average speed of Hubbard Glacier, [tex]v=105\ feet/year[/tex]

We need to find speed of advance of the glacier in  m/s. As we know that,

1 meter = 3.28 feet

And

[tex]1\ year=3.154\times 10^7\ second[/tex]

Using the above conversions, we can write the value of average speed is :

[tex]v=1.0148\times 10^{-6}\ m/s[/tex]

So, the speed of advance of the glacier is [tex]1.0148\times 10^{-6}\ m/s[/tex]. Hence, this is the required solution.

An insulated beaker with negligible mass contains liquid water with a mass of 0.270 kg and a temperature of 82.5 ∘C . How much ice at a temperature of -22.3 C must be dropped into the water so that the final temperature of the system will be 34.0 C?

Answers

Answer:

Explanation:

Given

mass of water [tex]m_1=0.27\ kg[/tex]

Temperature of water [tex]T_{wi}=82.5^{\circ}C[/tex]

Initial Temperature of ice[tex]=-22.3^{\circ}C[/tex]

Final temperature of system [tex]T=34^{\circ}C[/tex]

specific heat of water [tex]c=4.18\ kJ/kg-K[/tex]

specific heat of ice [tex]c_i=2.108\ kJ/kg-K[/tex]

Latent heat of ice [tex]L=336\ kJ/kg[/tex]

Heat loss by Water is equal to heat gained by ice

Heat loss by water [tex]Q_1=m_w\times c\times \Delta T[/tex]

[tex]Q_1=0.27\times 4.18\times (82.5-34)=54.7371\ kJ[/tex]

Heat gained by ice [tex]Q_1=x\times c_i(0-(-22.3))+x\times L+x\times c\times (T-0)[/tex]

[tex]Q_2=x\times 2.108\times (22.3)+x\times 336+x\times 4.18\times 34[/tex]

[tex]Q_2=525.1284x\ kJ[/tex]

[tex]Q_1=Q_2[/tex]

[tex]x=\frac{54.73}{525.1284}[/tex]

[tex]x=0.104\ kg[/tex]  

Jack and Jill exercise in a 25.0 m long swimming pool. Jack swims 9 lengths of the pool in 156.9 s ( 2 min and 36.9 s ) , whereas Jill, the faster swimmer, covers 10 lengths in the same time interval. Find the average velocity and average speed of each swimmer.

Answers

Answer:

Jill average velocity is  0

Jack  average velocity is 0.159337

Jill average speed = 1.593372

Jack average speed = 1.434034

Explanation:

given data

long swimming pool = 25.0 m

9 lengths of the pool = 156.9 s ( 2 min and 36.9 s )

10 lengths = same time interval

to find out

average velocity and average speed

solution

we know that average velocity that is express as

average velocity = [tex]\frac{displacement}{time}[/tex]    .....................1

Jill come back where she start

so here velocity will be = 0

and

Jack ends up on the other end of pool

so average velocity =  [tex]\frac{25}{156.9}[/tex]

average velocity = 0.159337

now we get here average speed that is express as

average speed = [tex]\frac{distance}{time}[/tex]      .............2

jack speed = 9 × [tex]\frac{25}{156.9}[/tex]

jack speed = 1.434034

and

Jill speed = 10 × [tex]\frac{25}{156.9}[/tex]

Jill speed = 1.593372

7. A neutral aluminum rod is at rest on a foam insulating base. A negatively charged balloon is brought near one end of the rod but not in direct contact with it. In what way, if any, will the charges in the rod be affected?

Answers

Answer:

If a negatively charged balloon is brought near one end of the rod but not in direct contact, then the negative charges on the balloon repel the same amount of negative charges on the end of the rod that is close to the balloon, and the positive charges stay at the balloon-side of the rod. The total charge of the rod is still zero, but the distribution of the charges are now non-uniform.

consider a perfectly inelastic head-on collision between a small car and a large truck traveling at the same speed. Which vehicle has a greater change in kinetic energy as a result of the collision

Answers

Answer: The truck has a greater kinetic energy

Explanation:

The initial velocities of both the truck and car are the same. Likewise, the final velocity is the same. The change in kinetic energy is dependent only on mass. The truck has a greater mass, therefore, the change in its kinetic energy is greater.

What is the speed v of a wave traveling down such a wire if the wire is stretched to its breaking point?

Answers

Answer:

v = 620.17 m/s

Explanation:

There are different formulas for calculating the speed of a wave. Based on the given parameters, the speed of the wave can be estimated as:

v = sqrt(breaking tensile strength/density)

Where:

The breaking tensile strength = 3*10^9 N/m^2

Density = 7800 kg/m^3

Therefore, we can estimate the speed of the wave as shown below:

v = sqrt(3*10^9/7800) = sqrt(384615.3846) = 620.17 m/s

Final answer:

The speed of a wave in a wire at its breaking point depends on the maximum tension the wire can sustain and its linear mass density, calculated with the formula v = (T/μ)¹⁄².

Explanation:

The speed v of a wave traveling down a wire at its breaking point would be determined by the tension in the wire just before breaking and the wire's linear mass density. The formula for the speed of a wave on a stretched string is v = (T/μ)¹⁄², where T is the tension in the wire and μ is the linear mass density. For a wire stretched to its breaking point, the tension T would be at its maximum value that the wire can sustain without breaking.

A mosquito of mass 0.15 mg is found to be flying at a speed of 50 cm/s with an uncertainty of 0.5 mm/s. (a) How precisely may its position be known? (b) Does this inherent uncertainty present any hindrance to the application of classical mechanics?

Answers

(a) The uncertainty principle reveals that the position of a flying mosquito can be known with an extremely high precision that doesn't affect the application of classical mechanics. (b) The inherent uncertainty calculated is extremely small.

(a) The Heisenberg principle states that the more precisely the position (Δx) of a particle is known, the less precisely its momentum (Δp) can be known, and vice versa. This is quantitatively expressed as ΔxΔp ≥ ħ/2, where ħ is the reduced Planck's constant (approximately 1.055 × 10⁻³⁴ J⋅s).

Given the speed (v) of the mosquito is 50 cm/s with an uncertainty in velocity (Δv) of 0.5 mm/s, and the mass (m) of the mosquito is 0.15 mg, we first convert these to SI units: v = 0.5 m/s, Δv = 5 × 10⁻⁴ m/s, and m = 0.15 × 10⁻⁶ kg. The uncertainty in momentum, Δp, is mΔv = (0.15 × 10⁻⁶ kg)(5 × 10⁻⁴ m/s) = 7.5 × 10⁻¹¹ kg⋅m/s.

Using the uncertainty principle, Δx ≥ ħ / (2Δp), where Δp is the momentum uncertainty calculated above. Plugging in values, Δx ≥ (1.055 × 10⁻³⁴ J⋅s) / (2 × 7.5 × 10⁻¹¹ kg⋅m/s) ≈ 7.033 × 10⁻²⁵ meters. This calculation shows how precisely the mosquito's position can be known.

(b) The inherent uncertainty calculated is extremely small, particularly when dealing with macroscopic objects like a mosquito. Therefore, this uncertainty does not present any hindrance to the application of classical mechanics, which comfortably applies at the scale of everyday objects.

A copper cylinder is initially at 21.1 ∘C . At what temperature will its volume be 0.163 % larger than it is at 21.1 ∘C?

Answers

Final answer:

The question from the student involves the concept of thermal expansion in physics, where the goal is to determine at what temperature a copper cylinder's volume becomes 0.163% larger than its original volume at 21.1°C.

Explanation:

The student's question is about thermal expansion, which is a concept in physics specifically relating to how the volume of a solid changes with temperature. This falls under the broader subject of thermodynamics. The student is given the initial volume and temperature of the copper cylinder and is asked to find the temperature at which its volume is 0.163% larger. To solve this, we need to use the linear expansion formula for solids.
The formula for the volume expansion of solids is
V = V₀(1 + βΔT), where V is the final volume, V₀ is the initial volume, β is the coefficient of volume expansion for copper, and ΔT is the change in temperature. To find the new temperature, we first need to express the 0.163% increase in volume as a decimal, which gives us 0.00163. We can then rearrange the formula to solve for ΔT. After finding ΔT, we add it to the initial temperature of 21.1°C to find the final temperature.

Plugging in the numbers:

0.00163 = 3(16.5 x 10⁻⁶)ΔT

ΔT = 21.3 °C

Therefore, T2 = T1 + ΔT = 21.1 °C + 21.3 °C = 42.4 °C

The temperature at which the copper cylinder's volume will be 0.163% larger than at 21.1 °C is 42.4 °C.

If a rope loaded with a force of 100 lbf had a spring constant of 500 lbf/inch, how far would the rope stretch or elongate?

Answers

To solve this problem we will apply the concepts related to Hooke's law for which the force exerted on a spring is described as the product between the spring constant and its displacement, that is

[tex]F = kx[/tex]

Where k is the spring's constant and x is the elongation,

Rearranging to find the elongation we have

[tex]x = \frac{F}{k}[/tex]

Replacing,

[tex]x = \frac{100}{500}[/tex]

[tex]x = 0.2in[/tex]

[tex]x = 5.08mm[/tex]

Therefore the elongation produced in the rope from its original length is 0.2in or 5.08mm

(a) A runner starts from rest and in 3 s reaches a speed of 8 m/s. If we assume that the speed changed at a constant rate (constant net force), what was the average speed during this 3 s interval?

Answers

Answer:

During the 3 s interval, the average velocity was 4 m/s.

Explanation:

Hi there!

The average velocity (AV) is calculated as follows:

AV = Δx / Δt

Where:

Δx = traveled distance.

Δt = elapsed time.

The traveled distance (x) is calculated as follows:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

Since x0 and v0 are equal to zero, the equation gets reduced to:

x = 1/2 · a · t²

Since the acceleration is constant, it can be calculated with this equation:

a = v/t

a = 8 m/s / 3 s

a = 8/3 m/s²

Then, the traveled distance will be:

x = 1/2 · a · t²

x = 1/2 · 8/3 m/s² · (3 s)²

x = 12 m

And the average velocity will be:

AV = Δx / Δt

AV = 12 m / 3 s = 4 m/s

During the 3 s interval, the average velocity was 4 m/s.

The coefficient of performance of a refrigerator is 5.0.

A. If the compressor uses 10 J of energy, how much heat is exhausted to the hot reservoir?
B. if the hot reservoir temperature is 27 degrees Celsius, what is the lowest possible temperature in degrees Celsius of the cold reservoir?

Answers

Answer:

[tex]Q_x=60\ J[/tex]

[tex]T_L=-23\ ^{\circ}C[/tex] is the lowest possible temperature of the cold reservoir.

Explanation:

Given:

Coefficient of performance of refrigerator, [tex]COP=5[/tex]

A)

We know that for a refrigerator:

[tex]\rm COP=\frac{ desired\ effect }{\: energy\ supplied }[/tex]

Given that 10 J of energy is consumed by the compressor:

[tex]5=\frac{desired\ effect}{10}[/tex]

[tex]\rm Desired\ effect=50\ J[/tex]

Now the by the conservation of energy the heat exhausted :

[tex]Q_x=50+10[/tex]

[tex]Q_x=60\ J[/tex]

B)

Also

[tex]COP=\frac{T_L}{T_H-T_L}[/tex]

where:

[tex]T_H\ \&\ T_L[/tex] are the absolute temperatures of high and low temperature reservoirs respectively.

[tex]5=\frac{T_L}{(273+27)-T_L}[/tex]

[tex]1500-5\times T_L=T_L[/tex]

[tex]T_L=250\ K[/tex]

[tex]T_L=-23\ ^{\circ}C[/tex] is the lowest possible temperature of the cold reservoir.

Final answer:

The coefficient of performance (COP) of a refrigerator is the ratio of heat removed from the cold reservoir to the work done by the compressor. Using this definition, we can solve for the amount of heat exhausted to the hot reservoir and the temperature of the cold reservoir.

Explanation:

The coefficient of performance (COP) of a refrigerator is a measure of its efficiency. It is defined as the ratio of heat removed from the cold reservoir to the work done by the compressor:

COP = heat removed / work done

(A) To find the amount of heat exhausted to the hot reservoir, we can use the formula:

heat removed = COP x work done

Substituting the given values, we get:

heat removed = 5.0 x 10 J = 50 J

(B) To find the lowest possible temperature of the cold reservoir, we can use the Carnot efficiency formula:

COP = hot temperature / (hot temperature - cold temperature)

Substituting the given values and rearranging the formula, we get:

cold temperature = hot temperature - (hot temperature / COP)

cold temperature = 27°C - (27°C / 5.0) = 21.6°C

A gadget of mass 21.85 kg floats in space without motion. Because of some internal malfunction, the gadget violently breaks up into 3 fragments flying away from each other. The first fragment has mass m1 = 6.42 kg and speed v1 = 6.8 m/s while the second fragment has mass m2 = 8.26 kg and speed v2 = 3.54 m/s. The angle between the velocity vectors ~v1 and ~v2 is θ12 = 64 ◦ . What is the speed v3 of the third fragment? Answer in units of m/s.

Answers

To solve this problem we will apply the concepts related to the conservation of momentum. For this purpose we will determine the velocities in the three body in the vertical and horizontal components. Once the system of equations is obtained, we will proceed to find the angle and the speed at which the third fragment is directed.

Mass of third part is

[tex]m_3 = m-(m_1+m_2)[/tex]

[tex]m_3= 21.85-6.42-8.26[/tex]

[tex]m_3 =7.17 kg[/tex]

Assume that [tex]m_1[/tex] is along X-axis we have that [tex]m_2[/tex] makes an angle is 64 degrees with x-axis and [tex]m_3[/tex] makes an angle [tex]\theta[/tex]  with x-axis.

Using law of conservation of momentum along X-axis

[tex]0 = (6.42*6.8)+(8.26*3.54*cos(64))+(7.71v_3 cos\theta)[/tex]

[tex](7.71v_3 cos\theta) = 56.4741[/tex]

[tex]v_3 cos\theta = 7.3247[/tex] [tex]\rightarrow \text{Equation 1}[/tex]

Now applying the same through the Y-axis.

[tex]0=0+8.26*3.54*sin(64\°) + 7.71*v_3*sin\theta[/tex]

[tex]-8.26*3.54*sin(64\°)=7.71*v_3*sin\theta[/tex]

[tex]v_3*sin\theta = -3.409[/tex] [tex]\rightarrow \text{Equation 2}[/tex]

If we divide the equation 1 with the equation 2 we have that

[tex]\frac{v_3cos\theta}{v_3 sin\theta } = \frac{7.3247}{-3.409}[/tex]

[tex]tan\theta = \frac{7.3247}{-3.409}[/tex]

[tex]\theta = tan^{-1} (\frac{7.3247}{-3.409})[/tex]

[tex]\theta = -65.04\°[/tex]

Using this angle in the second equation we have that velocity 3 is,

[tex]v_3 = \frac{-3.409}{sin(-65.04)}[/tex]

[tex]v_3 = 3.7601m/s[/tex]

Therefore the speed of the third fragment is [tex]3.7601\frac{m}{s} \angle -65.04\°[/tex]

Determine the period of a 1.7-m-long pendulum on the Moon, where the free-fall acceleration is 1.624 m/s2. Express your answer with the appropriate units.

Answers

Answer:

6.42 s

Explanation:

Period: This can be defined as the time taken for a wave or an oscillating body to complete on oscillation. The S.I unit of period is Second (s).

The period of a simple pendulum is represented as,

T = 2π√(L/g)....................................... Equation 1.

Where T = period, L = length of the pendulum, g = acceleration due to gravity. π = pie.

Given: L = 1.7 m, g = 1.624 m/s² and π = 3.14

T = 2(3.14)√(1.7/1.624)

T = 6.28√(1.047)

T = 6.28×1.023

T = 6.42 s.

Thus, the period of the pendulum = 6.42 s

The period of a 1.7-m-long pendulum on the Moon, where the free-fall acceleration is 1.624 m/s² is 6.425 secs

The formula for calculating the period of a simple pendulum is expressed using the formula:

[tex]T=2 \pi\sqrt{\frac{l}{g} }[/tex]

l is the length of the pendulum

g is the acceleration due to gravity

Given the following parameters

g =  1.624 m/s²

l = 1.7m

Substitute the given values into the formula:

[tex]T=2(3.14)\sqrt{\frac{1.7}{1.624} } \\T=6.28\sqrt{1.0468}\\T=6.28(1.0231)\\T = 6.425secs[/tex]

Hence the period of a 1.7-m-long pendulum on the Moon, where the free-fall acceleration is 1.624 m/s² is 6.425 secs.

Learn more here: https://brainly.com/question/2936338

The sound from a trumpet radiates uniformly in all directions in air with a temperature of 20∘C. At a distance of 5.18 m from the trumpet the sound intensity level is 54.0 dB . The frequency is 561 Hz .

What is the pressure amplitude at this distance?

Answers

Answer:

[tex]P=1.44*10^{-2}Pa[/tex]

Explanation:

The pressure amplitude is given by:

[tex]P=\sqrt{2I\rho v[/tex]

Here, I is the sound intensity, [tex]\rho[/tex] the density of the air and v the speed of air.

The sound intensity can be calculated from:

[tex]I=10^\beta I_0[/tex]

Where [tex]\beta[/tex] is the sound intensity level in bels and [tex]I_0[/tex] is the reference sound intensity. So, replacing (2) in (1):

[tex]P=\sqrt{2(10^\beta) I_o \rho v}\\P=\sqrt{2(10^{5.4})(10^{-14}\frac{W}{m^2})(1.2\frac{kg}{m^3})(344\frac{m}{s})}\\P=1.44*10^{-2}Pa[/tex]

Final answer:

The pressure amplitude is found using the formulas for pressure amplitude and sound intensity. Once the sound intensity is found, the pressure amplitude can be calculated, given the speed and density of air. The pressure amplitude at the given distance is approximately 0.0143 Pa.

Explanation:

The pressure amplitude can be found with the formula p = √(2*ρ*v*I), where p is the pressure amplitude, ρ is the density of the medium (air), v is the speed of sound in the medium, and I is sound intensity. The sound intensity level (dB) can be converted to sound intensity (W/m^2) by using the formula I = I0 * 10^(L/10), where I0 is the reference intensity (10^-12 W/m^2) and L is the sound intensity level in decibels.

So, calculating the sound intensity I = (10^-12 W/m^2) * 10^(54/10) = 0.002 W/m^2. Once we have the sound intensity, we can calculate the pressure amplitude using the speeds of sound in air at 20°C (343 m/s), and the density of air at sea level (1.225 kg/m^3). Substituting these values into our formula results in a pressure amplitude of about 0.0143 Pa.

Learn more about Pressure Amplitude here:

https://brainly.com/question/3424271

#SPJ11

An astronaut in an orbiting space craft attaches a mass m to a string and whirls it around in uniform circular motion. The radius of the circle is R, the speed of the mass is v, and the tension in the string is F. If the mass, radius, and speed were all to double the tension required to maintain uniform circular motion would be

Answers

Answer:

[tex]F'=4F[/tex]

Explanation:

According to Newton's second law, the tension in the string is equal to the centripetal force, since the mass is under an uniform circular motion:

[tex]F=F_c\\F=ma_c[/tex]

Here [tex]a_c[/tex] is the centripetal acceleration, which is defined as:

[tex]a_c=\frac{v^2}{r}[/tex]

So, replacing:

[tex]F=m\frac{v^2}{r}[/tex]

In this case we have [tex]m'=2m[/tex], [tex]v'=2v[/tex] and [tex]r'=2r[/tex]. Thus, the tension required to mantain uniform circular motion is:

[tex]F'=m'\frac{v'^2}{r'}\\F'=2m\frac{(2v)^2}{2r}\\F'=4m\frac{v^2}{r}\\F'=4F[/tex]

In the deep space between galaxies, the density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. What is the pressure (in Pa)?

Answers

Answer: 3.73 × 10^-17 Pa

Explanation:

N/V= 10^6 atom/m^3

T=2.7k

Kb=1.38 ×10^-23 J/K

NA= 6.02 × 10^23 mol^-1

R= 8.31J/mol.K

PV= NaKbT

PV= N/V × KbT

P= 10^6 × 1.38 × 10^-23× 2.7

Pressure= 3.73×10^-17 Pa

The pressure in pascal of the deep space whose density of atoms is as low as 10⁶ atoms/m3 is 3.73 × 10-¹⁷ Pa.

How to calculate pressure?

The pressure of a space can be calculated using the following expression:

PV= N/V × KbT

Where;

P = pressureV = volumeKb = temperature constantT = temperatureR = gas law constant

N/V = 10⁶ atom/m³T = 2.7KKb = 1.38 ×10^-23 J/KNA= 6.02 × 10²³ mol-¹R= 8.31J/mol.K

P = N/V × KbT

P= 10⁶ × 1.38 × 10-²³ × 2.7

Pressure = 3.73 × 10-¹⁷ Pa

Therefore, the pressure in pascal of the deep space whose density of atoms is as low as 10⁶ atoms/m3 is 3.73 × 10-¹⁷ Pa.

Learn more about pressure at: https://brainly.com/question/15175692

A stretched string is fixed at both ends, 77.7 cm apart. If the density of the string is 0.014 g/cm and its tension is 600 N, what is the wavelength of the first harmonic?

Answers

Answer:

The wavelength of the first harmonic is 155.4 cm.

Explanation:

Given that,

The separation between a stretched string that is fixed at both ends, l = 77.7 cm

The density of the string, [tex]d=0.014\ g/cm^3[/tex]

Tension in the string, T = 600 N

We need to find the wavelength of the first harmonic. The wavelength of the nth harmonic on the string that is fixed at both ends is given by :

[tex]\lambda=\dfrac{2l}{n}[/tex]

Here, n = 1

[tex]\lambda=2l[/tex]

[tex]\lambda=2\times 77.7[/tex]

[tex]\lambda=155.4\ cm[/tex]

So, the wavelength of the first harmonic is 155.4 cm. Hence, this is the required solution.                                                              

The wavelength of the first harmonic will be "155.4 cm".

Wavelength and Density

According to the question,

Separation between stretched string, I = 77.7 cm

String's density, d = 0.014 g/cm³

String's tension, T = 600 N

We know the relation,

Wavelength, λ = [tex]\frac{2l}{n}[/tex]

here, n = 1

then, λ = 2l

By substituting the values,

           = 2 × 77.7

           = 155.4 cm

Thus the above answer is appropriate.  

Find out more information about wavelength here:

https://brainly.com/question/14237669

Ask Your Teacher In the air over a particular region at an altitude of 500 m above the ground, the electric field is 120 N/C directed downward. At 600 m above the ground, the electric field is 110 N/C downward. What is the average volume charge density in the layer of air between these two elevations?

Answers

Answer:

[tex]1.475\times 10^{-13}\ C/m^3[/tex]

Explanation:

[tex]\epsilon_0[/tex] = Permittivity of free space = [tex]8.85\times 10^{-12}\ F/m[/tex]

A = Area

h = Altitude = 600 m

Electric flux through the top would be

[tex]-110A[/tex] (negative as the electric field is going into the volume)

At the bottom

[tex]120A[/tex]

Total flux through the volume

[tex]\phi=120-110\\\Rightarrow \phi=10A[/tex]

Electric flux is given by

[tex]\phi=\dfrac{q}{\epsilon_0}\\\Rightarrow q=\phi\epsilon_0\\\Rightarrow q=10A\epsilon_0[/tex]

Charge per volume is given by

[tex]\rho=\dfrac{q}{v}\\\Rightarrow \rho=\dfrac{10A\epsilon_0}{Ah}\\\Rightarrow \rho=dfrac{10\epsilon_0}{h}\\\Rightarrow \rho=\dfrac{10\times 8.85\times 10^{-12}}{600}\\\Rightarrow \rho=1.475\times 10^{-13}\ C/m^3[/tex]

The volume charge density is [tex]1.475\times 10^{-13}\ C/m^3[/tex]

Which is true about inelastic collisions: a. An inelastic collision does not obey conservation of energy. b. An inelastic collision conserves kinetic energy. c. Objects will stick together upon collision. d. Momentum is not conserved in inelastic collisions..

Answers

Answer:

Option c is correct

Explanation:

There are two types of collisions-elastic collision and inelastic collision.

In elastic collision, both kinetic energy and total momentum are conserved. On the other hand, in inelastic collision, total momentum is conserved but kinetic energy is not conserved. Thus, option b and d are incorrect.

Total energy is always conserved in both types. Thus, option a is incorrect.

In a perfectly inelastic collision, objects stick together. This happens because maximum kinetic energy is dissipated and used in bonding of the two objects. Thus, correct option is c.

Answer:

i believe its a?

Explanation:

In an inelastic collision, momentum is conserved

If Earth were twice as massive but it revolved at the same distance from the Sun, its orbital period would be

A) 1 year.
B) 3 years.
C) 2 years.
D) 4 years.
E) 6 months.

Answers

A) 1 Year, if the Earth is larger in mass, but still the same distance from the sun, it will orbit at the same rate.

The Earth will continue to orbit at the same rate even if its mass increases but its distance from the sun stays the same, or 1 year. Hence, option A is correct.

What are planets?

A huge, spherical celestial object that is not a star nor a remnant is called a planet. The emission nebula hypothesis, which holds that a cosmic cloud collapses out of a supernova to produce a young primitive orbited by a planetary system, is the best theory currently available for explaining planet formation. The slow accumulation of matter propelled by gravity—a process known as accretion—leads to the formation of planets in this disk.

The planetary systems Mercury, Venus, Earth, and Mars, as well as the giant planets Jupiter, Saturn, Uranus, and Neptune, make up the Solar System's minimum number of eight planets. Each of these planets revolves around an axis that is inclined with regard to its orbit pole.

Hence, option A is correct.

To know more about Planets :

https://brainly.com/question/14581221

#SPJ2

An electronic package with a surface area of 1 m2 placed in an orbiting space station is exposed to space. The electronics in this package dissipate all 1850 W of its power to space through its exposed surface. The exposed surface has an emissivity of 1.0 and an absorptivity of 0.25. Given: σ = 5.67×10–8 W/m2·K4

Answers

Final answer:

The temperature of the patch is approximately 1387 Kelvin, and the rate of heat loss through the patch is approximately 0.07 Watts.

Explanation:

The temperature of the patch can be calculated using the Stefan-Boltzmann law of thermal radiation, which states that the power radiated by an object is proportional to the fourth power of its temperature. The equation to calculate the temperature is:

T = sqrt((P / (A * sigma * e))

Where T is the temperature, P is the power, A is the surface area, sigma is the Stefan-Boltzmann constant, and e is the emissivity. Substituting the given values:

T = sqrt((1850 W / (1 m2 * 5.67×10–8 W/m2·K4 * 1.0)))

T = sqrt((1850 W / 5.67×10–8 W/m2·K4))

Calculating the square root:

T = 1387 K

The temperature of the patch is approximately 1387 Kelvin.

The rate of heat loss through the patch can be calculated using the Stefan-Boltzmann law:

P = A * e * sigma * T4

Substituting the known values:

P = (0.05 m * 0.08 m * 5.67×10–8 W/m2·K4 * 0.300 * (1387 K)4)

Calculating the power:

P = 0.07 W

The rate of heat loss through the patch is approximately 0.07 Watts.

Other Questions
complete each statement below by placing the proper word in the appropriate position to explain the scientific criteria for life What continuities/ what stayed the same (socially and demographically) in Americas when they came in contact with the Europeans A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A. The probability of the event A. B. The distribution of the event A. C. The correlation of the event A. D. The variance of the event A. What is the equation of the line that has a slope of -4 and goes through (-1,6) The diagram shows a cell that has completed mitosis and cytokinesis. Which stage of the cell cycle will both daughter cells now enter? Hurry need help on this QuestionA) MeiosisB) InterphaseC) CytokinesisD) The cell does not enter into a new cell cycle Each month, the census bureau mails survey forms to 250,000 households asking questions about the people living in the household and about such things as motor vehicles and housing costs. Telephone calls are made to households that do not return the form. In one month, responses were obtained from 240,000 of the households contacted. The population of interest is: yo (open) los regalos. fill in the blank with the correct conjugation of the verb in parentheses Marx argued that when workers are paid less than the value of their labor, this exploitation results in __________, a feeling of powerlessness and estrangement from other people and from oneself. Select one: a. alienation b. anomie c. class conflict d. bourgeoisie The sum of the measures of the angles of a triangle is 180. The sum of the measures of the second and third angles is twice the measure of the first angle. The third angle is 12 more than the second.Let x, y, and z represent the measures of the first, second, and third angles, respectively. Find the measures of the three angles. What is the equation of the line that is parallel to the line y - 1 = 4(x + 3) and passes through the point (4, 32)?A: y=-1/4x +33B: y=-1/4x + 36C: y = 4x - 16D: y = 4x + 16 The line passing through (11,y) and (2,0)is parallel to the line joining (7,5) and (-2,2). Find y. rectangle ABCD is graphed in the cordinate plane. The following are the verticies of the rectangle; A(-6,-4),B(-4,-4),C(-4,-2), and D (-6,-2). what is the perimiter The ideals of the Declaration have become deeply embedded in the Western outlook. Discuss this statement. The owner of a commercial warehouse has the building listed for $250,000. The net income of the building is $20,000. An investor wants to buy it at a cap rate of 12%. Will the investor offer the owner the same price as the owner has it listed for? If not, by how much will the owner have to change his price to meet the investor's request for a 12% cap rate? Hint: Income Generated/Rate = Value. Here are the positions at three different times for a bee in flight(a bee's top speed is about 7 m/s).time 4.8 s5.3 s5.8 sposition < -3.2,7.7, 0 > m< -1.0,6.4, 0 > m< 0.7,4.6, 0 > m(a) Between 4.8 s and 5.3 s, what was the bee's average velocity? Becareful with signs.< 4.4correct check mark, -2.6correct check mark, 0 > m/s(b) Between 4.8 s and 5.8 s, what was the bee's average velocity? Becareful with signs.< 3.9correct check mark, -3.1correct check mark, 0 > m/s(c) Of the two average velocities you calculated, which is the bestestimate of the bee's instantaneous velocity at time 4.8 s?acorrect check mark(d) Using the best information available, what was the displacementof the bee during the time interval from 4.8 s to 4.85 s?< -2.98wrong check mark, 7.57wrong check mark, 0 > m Jon is always willing to trade one can of Coke for one can of Sprite, or one can of Sprite for one can of Coke. What can you say about Jon's marginal rate of substitution? 7. Atoms gain and lose electrons to get a ____________ outer NRG level.What goes in the blank? Propane (CH) burns in oxygen to produce carbon dioxide and water. What is the correct form of the chemical equation that describes this reaction? determine the empirical formula for a compound that has the following analysis: 8.09% carbon, 0.34% hydrogen, 10.78% oxygen, and 80.78% bromine. How many grams are in 5.6 moles of C6H6? Steam Workshop Downloader