Answer:
18 in^2
Step-by-step explanation:
1 )The three sides of the gutter add up to 12
2x+ y = 12
2) Subtract 2x from both sides.
y = 12 — 2x
3 )Find the area of the rectangle in terms of x and simplify.
Area = xy = x(12 — 2x) = -2x^2+12x = f(x)
4 ) x=-b/2a
x co-ordinate of the vertex= -12/2(-2)=3
5 )Plug in 3 for x into they equation.
y co-ordinate of the vertex= 12 — 2(3) = 6
6 ) Plug in 3 for x and 6 for y.
Area= xy = 3(6) = 18
RESULT
18 in^2
According to DeMorgan 's theorem, the complement of W · X + Y · Z is W' + X' · Y' + Z'. Yet both functions are 1 for WXYZ = 1110. How can both a function and its complement be 1 for the same input combination? What's wrong here?
Answer:
The parenthesis need to be kept intact while applying the DeMorgan's theorem on the original equation to find the compliment because otherwise it will introduce an error in the answer.
Step-by-step explanation:
According to DeMorgan's Theorem:
(W.X + Y.Z)'
(W.X)' . (Y.Z)'
(W'+X') . (Y' + Z')
Note that it is important to keep the parenthesis intact while applying the DeMorgan's theorem.
For the original function:
(W . X + Y . Z)'
= (1 . 1 + 1 . 0)
= (1 + 0) = 1
For the compliment:
(W' + X') . (Y' + Z')
=(1' + 1') . (1' + 0')
=(0 + 0) . (0 + 1)
=0 . 1 = 0
Both functions are not 1 for the same input if we solve while keeping the parenthesis intact because that allows us to solve the operation inside the parenthesis first and then move on to the operator outside it.
Without the parenthesis the compliment equation looks like this:
W' + X' . Y' + Z'
1' + 1' . 1' + 0'
0 + 0 . 0 + 1
Here, the 'AND' operation will be considered first before the 'OR', resulting in 1 as the final answer.
Therefore, it is important to keep the parenthesis intact while applying DeMorgan's Theorem on the original equation or else it would produce an erroneous result.
The error originates from an incorrect application of DeMorgan's theorem. The correct complement of (W · X) + (Y · Z) is (W' + X') · (Y' + Z'). This corrects the discrepancy seen for WXYZ = 1110.
Explanation:The confusion here likely originates from a mistake in the DeMorgan's theorem application. According to DeMorgan's Theorem, the complement of (W · X) + (Y · Z) is given by (W' + X') · (Y' + Z'), not W' + X' · Y' + Z'.
So, if we have WXYZ = 1110, the given function (W · X) + (Y · Z) equals 1 because we have (1 · 1) + (1 · 0) = 1 + 0 = 1. Whereas, the correct complement function, (W' + X') · (Y' + Z') equals 0 because we have (0 + 0) · (0 + 1) = 0 · 1 = 0.
This explains why we were seeing both original function and the incorrectly applied complement function evaluating to 1 for the same input combination.
Learn more about DeMorgan's Theorem here:https://brainly.com/question/36347708
#SPJ3
The number of hours sixth grade students took to complete a research project was recorded with the following results. Hours Number of students (f) 4 15 5 11 6 19 7 6 8 9 9 16 10 2 A student is selected at random. The events A and B are defined as follows. A = event the student took at most 9 hours B = event the student took at least 9 hours Are the events A and B disjoint? Yes No
Answer:
[tex] P(A \cap B) = P(X=9) =\frac{16}{78} \neq 0[/tex]
The correct answer would be:
NO
Step-by-step explanation:
For this case we have the following dataset given
Hours Number of students (f)
_______________________________
4 15
5 11
6 19
7 6
8 9
9 16
10 2
______________________________
Total 78
For this case we have defined the following events:
A = event the student took at most 9 hours
B = event the student took at least 9 hours
And we can find the empirical probability for both elements like this:
[tex] P(A) = \frac{78-2}{78}= \frac{76}{78}[/tex]
[tex] P(B) = \frac{16+2}{78}= \frac{18}{78}[/tex]
And for this case we want to see if A and B are disjoint
From definition two events X and Y are disjoint if the two sets not have a common elements, and we satisfy that:
[tex] P(X \cap Y) =0[/tex]
So this case the intersection for the events A and B is X=9, because at most 9 means [tex] X \leq 9[/tex] and at least 9 means [tex] X \geq 9[/tex] and the intersection between [tex] X \leq 9[/tex] and [tex] X \geq 9[/tex] is X=9
So then the probability:
[tex] P(A \cap B) = P(X=9) =\frac{16}{78} \neq 0[/tex]
So then we can conclude that the two events not are disjoint
The correct answer would be:
NO
No, the events A and B are not disjoint.
If two events have no outcomes in common, then they are called disjoint.
We have data of the number of hours sixth grade students took to complete a research project as:
For this case we have the following dataset given
Hours Number of students (f)
4 15
5 11
6 19
7 6
8 9
9 16
10 2
Total 78
Two events are:
A = event the student took at most 9 hours
B = event the student took at least 9 hours
Now, the number of students who took at most 9 hours
= 78 - 2
= 76
So, [tex]P(A)=\frac{76}{78}[/tex]
The number of students who took at least 9 hours
=16 +2
=18
So, [tex]P(B)=\frac{16}{78}[/tex]
Number of students who read exactly 9 hours
P(A n B)[tex]=\frac{16}{78}[/tex][tex]\neq 0[/tex]
Therefore the events A and B disjoint are not disjoint.
Learn more:https://brainly.com/question/3775989
Given the following data for resting heartrate among college students, what is the IQR? 57, 59, 60, 62, 62, 63, 64, 68, 70, 70, 71, 71, 73, 79, 87, 89, 90
Answer:
14
Step-by-step explanation:
The inter-quartile range (IQR) is the difference between the third and first quartile. The data gathered is:
57, 59, 60, 62, 62, 63, 64, 68, 70, 70, 71, 71, 73, 79, 87, 89, 90
The data set has 17 values, the first quartile is the average between the 4th and 5th values, while the third quartile is the average between the 13th and 14th values:
[tex]Q_1 = \frac{62+62}{2}=62\\Q_3 = \frac{73+79}{2}=76[/tex]
The IQR is:
[tex]IQR = Q_3 - Q_1 = 76 -62\\IQR = 14[/tex]
The Interquartile Range (IQR) of the given data for resting heart rate among college students is 11, calculated by finding the difference between the upper (third) and lower (first) quartiles.
Explanation:Given the following data for resting heartrate among college students: 57, 59, 60, 62, 62, 63, 64, 68, 70, 70, 71, 71, 73, 79, 87, 89, 90, we are to find the Interquartile Range (IQR). The IQR is a statistical term that measures the statistical spread, or variability, of data points. It is calculated as the difference between the 75th percentile (Q3) and the 25th percentile (Q1).
First, we need to arrange the data points in ascending order, which has already been done for us in this case. Next, let's divide the data into two halves: the lower half and the upper half. For our data, the lower half is 57 to 68 and the upper half is 70 to 90. Find the median (middle value) of each half. The lower half median (Q1) is 62, and upper half median (Q3) is 73.
Now, subtract Q1 from Q3 to find the IQR: 73 - 62 = 11. So, the IQR of the resting heart rates of the given college students data is 11.
Learn more about Interquartile Range here:https://brainly.com/question/37229455
#SPJ11
Assume that T is a linear transformation. Find the standard matrix of T.
T: set of real numbers R^2 →R^2 first rotates points through ( -pi/6) radians (clockwise) and then reflects points through the horizontal x1-axis.
Answer:
The Matrix of T is
[tex]\left[\begin{array}{cc}cos(\pi/6)&-sin(\pi/6)\\-sin(\pi/6)&-cos(\pi/6)\end{array}\right][/tex]
Step-by-step explanation:
Rotate -pi/6 Clockwise is the same as rotating pi/6 anticlockwise. The matrix of that rotation is
[tex]\left[\begin{array}{cc}cos(\pi/6)&-sin(\pi/6)\\sin(\pi/6)&cos(\pi/6)\end{array}\right][/tex]
The matrix of the reflection through the x1-axis is
[tex]\left[\begin{array}{cc}1&0\\0&-1\end{array}\right][/tex]
Therefore, the composition is the product of both matrices is the matrix of T
[tex]MT = \left[\begin{array}{cc}1&0\\0&-1\end{array}\right] * \left[\begin{array}{cc}cos(\pi/6)&-sin(\pi/6)\\sin(\pi/6)&cos(\pi/6)\end{array}\right] = \left[\begin{array}{cc}cos(\pi/6)&-sin(\pi/6)\\-sin(\pi/6)&-cos(\pi/6)\end{array}\right][/tex]
I hope that works for you!
To find the standard matrix of the linear transformation [tex]\( T \)[/tex], we need to perform two operations in sequence: a rotation through [tex]\( -\frac{\pi}{6} \)[/tex] radians (clockwise) and a reflection through the horizontal [tex]\( x_1 \)-axis[/tex]. We will find the matrices for each of these transformations and then multiply them to get the standard matrix for [tex]\( T \)[/tex].
1. Rotation Matrix [tex]\( R \)[/tex]:
The matrix that represents a rotation through an angle [tex]\( \theta \)[/tex] in the counterclockwise direction is given by:
[tex]\[ R(\theta) = \begin{bmatrix} \cos(\theta) -\sin(\theta) \\ \sin(\theta) \cos(\theta) \end{bmatrix} \][/tex]
For a clockwise rotation, we use a negative angle, so for [tex]\( -\frac{\pi}{6} \)[/tex] radians, the rotation matrix is:
[tex]\[ R\left(-\frac{\pi}{6}\right) = \begin{bmatrix} \cos\left(-\frac{\pi}{6}\right) -\sin\left(-\frac{\pi}{6}\right) \\ \sin\left(-\frac{\pi}{6}\right) \cos\left(-\frac{\pi}{6}\right) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} \frac{1}{2} \\ -\frac{1}{2} \frac{\sqrt{3}}{2} \end{bmatrix} \][/tex]
2. Reflection Matrix [tex]\( M \)[/tex]:
The matrix that represents a reflection through the horizontal[tex]\( x_1 \)[/tex]-axis is given by:
[tex]\[ M = \begin{bmatrix} 1 0 \\ 0 -1 \end{bmatrix} \][/tex]
3. Standard Matrix of [tex]\( T \)[/tex]
To find the standard matrix of[tex]\( T \)[/tex], we multiply the rotation matrix [tex]\( R \)[/tex] by the reflection matrix [tex]\( M \)[/tex]:
[tex]1 0 \\ 0 -1[/tex]
[tex]\end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} \frac{1}{2} \\ -\frac{1}{2} \frac{\sqrt{3}}{2} \end{bmatrix} \] \[ T = \begin{bmatrix} \frac{\sqrt{3}}{2} \frac{1}{2} \\ \frac{1}{2} -\frac{\sqrt{3}}{2} \end{bmatrix} \][/tex]
Therefore, the standard matrix of the linear transformation [tex]\( T \)[/tex] is:
[tex]\[ \boxed{T = \begin{bmatrix} \frac{\sqrt{3}}{2} \frac{1}{2} \\ \frac{1}{2} -\frac{\sqrt{3}}{2} \end{bmatrix}} \][/tex]
This matrix represents the transformation that first rotates points through [tex]\( -\frac{\pi}{6} \)[/tex] radians (clockwise) and then reflects them through the horizontal [tex]\( x_1 \)-axis.[/tex]
Consider the following types of data that were obtained from a random sample of 49 credit card accounts. Identify all the averages (mean, median, or mode) that can be used to summarize the data. (Select all that apply.)
(a) Outstanding balance on each account.
A. mode
B. median
C. mean
Answer:
All options( option A, option B and option C)
Step-by-step explanation:
Mean, median and mode are used to summarize the data. Mode can be calculated for both quantitative and qualitative data but mean and median cannot be calculated for qualitative data.
Here outstanding balance on each account represents quantitative data and mode, median and mean all can summarize the quantitative data. So, mean, median and mode each can be used to summarize the data of outstanding balance on each account.
The Bay of Fundy in Canada has the largest tides in the world. The difference between low and high water levels is 20 meters. At a particular point the depth of the water, y meters, is given as a function of time, t, in hours since midnight by y = D + A cos(B(t ? C)).
a) What is the value of B? Assume the time between successive high tides is 12.7 hours. Give an exact answer.
b) What is the physical meaning of C?
The value of B is determined by the equation 2π / 12.7, which corresponds to the tide's period. The variable C represents the time delay from midnight to the first high tide, which is a phase shift in the function.
Explanation:The Bay of Fundy tidal pattern can be modeled using a cosine function. Since tides go through a complete cycle (360 degrees or 2π radians) every 12.7 hours, the value of B, the frequency, can be determined by dividing 2π by the period of the tide in hours.
Therefore, B = 2π / 12.7.
The variable C in the equation represents a phase shift. In this context, a phase shift refers to a horizontal shift of the cosine function, which corresponds to a time delay or advance of the tides. The meaning of C is the time delay between midnight and the first high tide of the day.
Learn more about Trigonometric Function here:https://brainly.com/question/28483432
#SPJ2
David's gasoline station offers 4 cents off per gallon if the customer pays in cash. Past evidence indicates that 40% of all customers pay in cash. During a one-hour period, 15 customers buy gasoline at this station. What is the probability that more than 8 and less than 12 customers pay in cash?
Answer:
The probability that more than 8 and less than 12 customers pay in cash is 0.0931.
Step-by-step explanation:
Let X = a customer at David's gasoline station pay in cash.
The probability of a customer paying in cash is, P (X) = p = 0.40
The number of customers at the gasoline station during a 1-hour period is,
n = 15.
Then the random variable X follows a binomial distribution, Bin (15, 0.40).
The probability function for a Binomial distribution is:
[tex]P(X=x)={n\choose x}p^{x}(1-p)^{n-x}[/tex]
Compute the probability that more than 8 and less than 12 customers pay in cash as follows:
[tex]P(8< X< 12)=P(X<12)-P(X<8)\\=P(X=9)+P(X=10)+P(X=11)\\=[{15\choose 9}(0.40)^{9}(1-0.40)^{15-9}]+[{15\choose 10}(0.40)^{10}(1-0.40)^{15-10}]\\+[{15\choose 11}(0.40)^{11}(1-0.40)^{15-11}]\\=0.0612+0.0245+0.0074\\=0.0931[/tex]
Thus, the probability that more than 8 and less than 12 customers pay in cash is 0.0931.
The problem comes to calculating binomial probabilities for when 9, 10, and 11 customers pay in cash and adding them together. This scenario applies to binomial distribution, where we have a success (paying in cash) happening with a probability of 40%.
Explanation:This question is a problem of the binomial distribution. The binomial distribution is used when there are exactly two mutually exclusive outcomes of a trial (often referred to as success and failure). In this case, the success is the customer paying in cash, which happens 40% of the time according to past evidence.
The formula for the binomial distribution is:
P(X = k) = C(n, k) * (p^k) * ((1-p)^(n-k))
where
P(X = k) is the probability we are trying to calculateC(n, k) is the number of combinations of n items taken k at a timep is the probability of success on an individual trial (0.4 or 40% for pay in cash)n is the number of trials (15 customers)k is the number of successes we want (more than 8 and less than 12, so we calculate for 9, 10, and 11 separately and then add them together)Carry out this calculation for k=9, 10, 11, and then add these probabilities together to get the probability that more than 8 and less than 12 customers pay in cash.
Learn more about Binomial Distribution here:https://brainly.com/question/33656163
#SPJ3
Which of the following best describes galena’s cleavage (see animation in placemark)? a. three directions at ~90° b. three directions not at ~90° c. two directions at ~90° d. two directions not at ~90°
Answer:
a)
Step-by-step explanation:
Given problem:
Which of the following best describes galena’s cleavage (see animation in placemark)?
Options:
a)three directions at ~90
b) three directions not at ~90°
c) two directions at ~90°
d) two directions not at ~90°
Solution:
- As per the animation where the place-mark is observed as a point. We can see that corner point is a point of intersection of three planes, left, right and bottom. We can also see that these three planes are at right angles @ 90 degrees to each other. Hence, option A.
Solve the following systems of equations using the matrix method: a. 3x1 + 2x2 + 4x3 = 5 2x1 + 5x2 + 3x3 = 17 7x1 + 2x2 + 2x3 = 11 b. x − y − z = 0 30x + 40y = 12 30x + 50z = 12 c. 4x1 + 2x2 + x3 + 5x4 = 0 3x1 + x2 + 4x3 + 7x4 = 1 2x1 + 3x2 + x3 + 6x4 = 1 3x1 + x2 + x3 + 3x4 = 4
Answer:
(a) x1 = 11/13, x2 = 50/13, x3 = -17/13
(b) x = 54/235, y = 6/47, z = 24/235
(c) x1 = 22/9, x2 =164/9, x3 = 139/9, x4 = -37/3
Step-by-step explanation:
Gaussian Elimination Method was the matrix method used in solving the system of equations.
It is done by writing the equations given in an augmented form, this is shown in the attachment. The coefficients of each variable is taken to form a matrix.
Row operations are then performed on the augmented matrix. This operation can be addition, subtraction, multiplication, or division.
For convenience, Row is written as R1, Row 2 as R2, and so on
R2 - R3 means Subtract Row 3 from Row 2, and so on.
The step by step operations for each question are shown in the attachment.
The matrix method involves representing the systems of equations as matrices, and then using matrix operations or the inverse matrix method to solve for the variables. This method can only be used when the system has a unique solution.
Explanation:Using the matrix method to solve systems of equations involves first representing the system as a matrix. For example, the first system of equations can be represented as a matrix: [[3,2,4], [2,5,3], [7,2,2]][[x1],[x2],[x3]] = [[5], [17], [11]]. Similarly, the second and third systems can be written in matrix form. Then you can use various matrix operations or the inverse matrix method to solve for the variables. Note that this method is used only when the system has a unique solution - that is, when the coefficient matrix is invertible.
Learn more about Matrix method for systems of equations here:https://brainly.com/question/35871066
#SPJ11
What are the real and complex solutions of the polynomial equation? x^3-64=0
The real and complex solutions of the cubic equation [tex]x^3-64=0[/tex] are x=4 (real solution) and x= -2+2i√3, x= -2-2i√3 (complex solutions). This was found using the difference of cubes formula.
Explanation:The polynomial equation asked in the question is [tex]x^3-64=0,[/tex] which is a cubic equation rather than a quadratic equation. Hence we need to use a different method to solve it rather than the quadratic formula. Here we can use the difference of cubes formula, which indicates [tex]a^3-b^3[/tex] can be factored as [tex](a-b)(a^2+ab+b^2).[/tex] For this equation, the 'a' term is x (because [tex]x^3 = a^3[/tex]) and the 'b' term is 4 (because 4^3 = 64 which is b^3).
Following this formula, we factor the equation as [tex](x-4)(x^2+4x+16)=0.[/tex] Since this equation is set to equal zero, either the first factor equals zero (which gives us a solution x=4) or the second factor equals zero. After using the quadratic equation for the second factor, it has no real roots since its discriminant [tex](b^2-4ac = 4^2 - 4*1*16 = 16 - 64 = -48)[/tex]is negative. However, it has complex roots, which are -2+2i√3 and -2-2i√3.
So, the real and complex solutions of the polynomial equation [tex]x^3-64=0[/tex]are x=4, x= -2+2i√3, x= -2-2i√3.
Learn more about Solving Polynomial Equation here:https://brainly.com/question/14837418
#SPJ12
The real solution for the equation x^3-64=0 is 4. The complex solutions are -2 + 2i√3 and -2 - 2i√3. Therefore, the complete solutions are {4, -2 + 2i√3, -2 - 2i√3}.
Explanation:The given equation is x3-64=0. First, we can rewrite this equation as x3=64. This can be solved by taking the cube root of both sides, which gives us x = 4. Thus, 4 is the real solution.
To find the complex solutions, we need to use the fact that every non-zero number has three cube roots. The other two solutions can be found using the formula:
x = -2 + 2i√3
x= -2 - 2i√3
Therefore, the complete solution set of the equation x3-64=0 is {4, -2 + 2i√3, -2 - 2i√3}
Learn more about Polynomial equations here:https://brainly.com/question/30127172
#SPJ2
A crystal growth furnace is used in research to determine how best to manufacture crystals used in electronic components for the space shuttle. For proper growth of the crystal, the temperature must be controlled accurately by adjusting the input power. Suppose the relationship is given by
T(w)=0.1w2+2.155w+20
where T is the temperature in degrees Celsius and w is the power input in watts.
Answer: The question is incomplete ad some details are missing.
it says Suppose the relationship is given by T(w)=0.1w2+2.155w+20
where T is the temperature in degrees Celsius and w is the power input in watts.
a) How many watts of power are needed to maintain the temperature at exactly 200degree celsius
= 33watts of power are needed
Step-by-step explanation:
The detailed steps and appropriate substitution is as shown in the attachment
You are about to take the road test for your driver's license. You hear that only 38% of candidates pass the test the first time, but the percentage rises to 76% on subsequent requests. Estimate the average number of tests drivers take in order to get a license. Your simulation should use at least 20 runs.
Answer:
Answers may vary but will most likely be close to 2.
Step-by-step explanation
Given:first test:38%
second test:76%
SIMULATION FIRST TEST
Randomly select a 2-digit number.
If the digit is between 00 and 35 then you passed the test,else you did not pass the test.
SIMULATION SECOND TEST
Randomly select a 2-digit number.
if the digit is between 00 and 75 then you passed the test,else you did not pass the test.
SIMULATION TRIAL
Perform the simulation of the first test.if you did not pass the first test then perform the simulation of the second test.
Record the number of trials needed to pass the first or second test.
Repeat 20 times and take the average of the 20 recorded number of trials
(what is the sum of recorded values divided by 20).
Note:you will most likely obtain a result of about two trials needed.
The estimated average number of tests drivers take to get a license is 1.9
To estimate the average number of tests drivers take to get a license, we can simulate the process using a simple random experiment. We will assume that each test attempt is independent of the others and that the probabilities of passing are 38% on the first attempt and 76% on subsequent attempts. Here's how we can perform the simulation:
1. For each driver, simulate the number of tests they take by generating a random number between 0 and 1. If the number is less than or equal to 0.38 (38%), the driver passes on the first attempt. Otherwise, they proceed to a second attempt.
2. For the second attempt and any subsequent attempts, generate another random number. If the number is less than or equal to 0.76 (76%), the driver passes.
3. Repeat this process until the driver passes the test. Record the number of attempts it took.
4. Perform this simulation for 20 drivers to get a sample size that will help estimate the average number of tests taken.
5. Calculate the average number of tests by summing the number of tests taken by all drivers and dividing by the number of drivers (20).
Let's perform the simulation:
1. For the first attempt, generate a random number for each of the 20 drivers and check if it's less than or equal to 0.38.
2. For any subsequent attempts, generate a random number for each driver who did not pass on the first attempt and check if it's less than or equal to 0.76.
3. Record the number of attempts for each driver.
4. Sum the total number of attempts and divide by 20 to find the average.
Now, let's calculate the average number of tests based on the simulation: Assuming we have performed the simulation and recorded the number of attempts for each driver, we would have a list of numbers. For example, it might look something like this:
Driver 1: 1 attempt
Driver 2: 2 attempts
Driver 3: 1 attempt
Driver 20: 3 attempts
Let's say after performing the simulation, we have the following counts for each number of attempts:
1 attempt: 8 drivers
2 attempts: 7 drivers
3 attempts: 4 drivers
4 attempts: 1 driver
Now, we calculate the average number of tests taken by these 20 drivers:
Average = (8 * 1 + 7 * 2 + 4 * 3 + 1 * 4) / 20
Average = (8 + 14 + 12 + 4) / 20
Average = 38 / 20
Average = 1.9
Two planes left the airport traveling in the same direction. The distance Plane A traveled is modeled by the function d(t)=290t where d represents distance in miles and t represents time in hours. Plane B traveled a total of 540 miles in 2 hours. How does the distance Plane A traveled in 1 hour compare to the distance Plane B traveled in 1 hour? The distance Plane A traveled in 1 h is greater than the distance Plane B traveled in 1 h. The distance Plane A traveled in 1 h is less than the distance Plane B traveled in 1 h. The distance Plane A traveled in 1 h is equal to the distance Plane B traveled in 1 h.
Answer:
The distance Plane A traveled in 1 h is greater than the distance Plane B traveled in 1 h.
Step-by-step explanation:
The equation of the distance traveled by Plane A is
[tex]d(t) = 290t[/tex]
The plane B traveled 540 miles in 2 hours.
So in 1 hour, plane B traveled 540/2 = 270 miles:
How does the distance Plane A traveled in 1 hour compare to the distance Plane B traveled in 1 hour?
Plane A:
d(1) = 290*1 = 290
Plane A traveled 290 miles in 1 hour.
Plane B travaled 270 miles in 1 hour.
So the correct answer is:
The distance Plane A traveled in 1 h is greater than the distance Plane B traveled in 1 h.
Answer:
The distance Plane A traveled in 1 h is greater than the distance Plane B traveled in 1 h.
Step-by-step explanation:
A company reports the following: Sales $4,400,000 Average total assets (excluding long-term investments) 2,000,000 Determine the asset turnover ratio. Round your answer to one decimal place.
Answer:
2.2 times
Step-by-step explanation:
Given that,
Sales = $4,400,000
Average total assets (excluding long-term investments) = 2,000,000
Therefore, it is as follows;
Asset turnover ratio:
= Sales ÷ Average total assets (excluding long-term investments)
= $4,400,000 ÷ 2,000,000
= 2.2 times
Hence, the asset turnover ratio of this company is 2.2 times.
Suppose that the data for analysis includes the attributeage. Theagevalues for the datatuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30,33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.(a) What is themeanof the data? What is themedian?(b) What is themodeof the data? Comment on the data’s modality (i.e., bimodal,trimodal, etc.).(c) What is themidrangeof the data?(d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?(e) Give thefive-number summaryof the data.(f ) Show aboxplotof the data.(g) How is aquantile–quantile plotdifferent from aquantile plot? g
Answer:
a) [tex]\bar X = \frac{\sum_{i=1}^{27} X_i }{27}= \frac{809}{27}=29.96[/tex]
[tex] Median = 25[/tex]
b) [tex] Mode = 25, 35[/tex]
Since 25 and 35 are repeated 4 times, so then the distribution would be bimodal.
c) [tex] Midrange = \frac{70+13}{3}=41.5[/tex]
d) [tex] Q_1 = \frac{20+21}{2} =20.5[/tex]
[tex] Q_3 =\frac{35+35}{2}=35[/tex]
e) Min = 13 , Q1 = 20.5, Median=25, Q3= 35, Max = 70
f) Figura attached.
g) When we use a quantile plot is because we want to show the percentage or the fraction of values below or equal to an specified value for the distribution of the data.
By the other hand the quantile-quantile plot shows the quantiles of the distribution values against other selected distribution (specified, for example the normal distribution). If the points are on a straight line we assume that the data values fit very well to the hypothetical distribution selected.
Step-by-step explanation:
For this case w ehave the following dataset given:
13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30,33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.
Part a
The mean is calculated with the following formula:
[tex]\bar X = \frac{\sum_{i=1}^{27} X_i }{27}= \frac{809}{27}=29.96[/tex]
The median on this case since we have 27 observations and that represent an even number would be the 14 position in the dataset ordered and we got:
[tex] Median = 25[/tex]
Part b
The mode is the most repeated value on the dataset on this case would be:
[tex] Mode = 25, 35[/tex]
Since 25 and 35 are repeated 4 times, so then the distribution would be bimodal.
Part c
The midrange is defined as:
[tex] Midrange = \frac{Max+Min}{2}[/tex]
And if we replace we got:
[tex] Midrange = \frac{70+13}{3}=41.5[/tex]
Part d
For the first quartile we need to work with the first 14 observations
13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25
And the Q1 would be the average between the position 7 and 8 from these values, and we got:
[tex] Q_1 = \frac{20+21}{2} =20.5[/tex]
And for the third quartile Q3 we need to use the last 14 observations:
25, 30,33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70
And the Q3 would be the average between the position 7 and 8 from these values, and we got:
[tex] Q_3 =\frac{35+35}{2}=35[/tex]
Part e
The five number summary for this case are:
Min = 13 , Q1 = 20.5, Median=25, Q3= 35, Max = 70
Part f
For this case we can use the following R code:
> x<-c(13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30,33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70)
> boxplot(x,main="boxplot for the Data")
And the result is on the figure attached. We see that the dsitribution seems to be assymetric. Right skewed with the Median<Mean
Part g
When we use a quantile plot is because we want to show the percentage or the fraction of values below or equal to an specified value for the distribution of the data.
By the other hand the quantile-quantile plot shows the quantiles of the distribution values against other selected distribution (specified, for example the normal distribution). If the points are on a straight line we assume that the data values fit very well to the hypothetical distribution selected.
Suppose each of 12 players rolls a pair of dice 3 times. Find the probability that at least 4 of the players will roll doubles at least once. (Answer correct to four decimal places.)
Answer:
Our answer is 0.8172
Step-by-step explanation:
P(doubles on a single roll of pair of dice) =(6/36) =1/6
therefore P(in 3 rolls of pair of dice at least one doubles)=1-P(none of roll shows a double)
=1-(1-1/6)3 =91/216
for 12 players this follows binomial distribution with parameter n=12 and p=91/216
probability that at least 4 of the players will get “doubles” at least once =P(X>=4)
=1-(P(X<=3)
=1-((₁₂ C0)×(91/216)⁰(125/216)¹²+(₁₂ C1)×(91/216)¹(125/216)¹¹+(₁₂ C2)×(91/216)²(125/216)¹⁰+(₁₂ C3)×(91/216)³(125/216)⁹)
=1-0.1828
=0.8172
A measurement of the circumference of a disk has an uncertainty of 1 . 5 mm. How many measurements must be made so that the diameter can be estimated with an uncertainty of only 0 . 5 mm
Answer:
How many measurements must be made = 9
Step-by-step explanation:
The steps are as shown in the attachment.
To reduce the uncertainty in the diameter of a disk from 1.5mm to 0.5mm, three times more measurements of the circumference would need to be made. This is due to the relationship between the circumference and diameter, and how the uncertainty propagates through this relationship.
Explanation:This question pertains to the areas of accuracy, precision, and uncertainty in measurements. Understanding these concepts is vital in the field of physics. The circumference of a disk and its diameter are related by the constant π (Pi): Diameter = Circumference / π.
The question states that there is an uncertainty of 1.5 mm in measuring the circumference. Given that the diameter and circumference are directly connected, when you reduce the uncertainty in the measurement of the circumference (e.g., by taking more measurements), you also reduce the uncertainty in the diameter. However, the relationship is not linear. Through propagation of uncertainty principles, the uncertainty in diameter would be the uncertainty in the circumference divided by π. To reduce this to 0.5 mm, you would require three times more measurements.
The precision of a measurement system is closely linked to the size of its measurement increments. The smaller the measurement increment, the more precise the tool. Various factors can contribute to the uncertainty of a measurement, including the smallest division on a given tool, the ability of the person making the measurement, irregularities in the object being measured, and unforeseen circumstances that affect the outcome.
Learn more about Measurement Uncertainty here:https://brainly.com/question/35651393
#SPJ11
The University of Michigan's business school claims it has the highest average GPA in the Big 10 among its business students. The business school claims that the business student average GPA is 3.5. Your friend believes that Michigan's claims are falsely inflated. In an effort to prove whether the grades are falsely inflated, your friend collects a random sample of 100 business students from Michigan and gets an average GPA of 3.31 with a standard deviation of 0.3.
Interpret a 5% chance of a type I error occurring:
A. an alpha level of .05 means that 5% of the time, the null hypothesis is rejected when it is actually correct.
B. an alpha level of .05 means that 5% of the time, the null hypothesis is rejected when it is actually incorrect.
C. an alpha level of .05 means that 5% of the time, the null hypothesis is not rejected when it is actually correct.
D. an alpha level of .05 means that 5% of the time, the null hypothesis is not rejected when it is actually incorrect.
Answer:
A
Step-by-step explanation:
The type I error arises when we wrongfully reject the null hypothesis. The probability of occurrence of type I error is denoted as α. Thus, α=0.05 means that there is 5% probability that we reject the null hypothesis when it is true. So, we can say that the α=0.05, means that 5% of the time, we reject the null hypothesis when it is correct.
Answer:
A
Step-by-step explanation:
HELP ASAP the answer is on one of the arrows shown find x please show work
Focus on the sub-triangle on the left. It is a right triangle with legs 9 and 6, so its hypothenuse is
[tex]\sqrt{9^2+6^2}=\sqrt{81+36}=\sqrt{117}[/tex]
Now focus on the sub-triangle on the right. It is a right triangle with legs 6 and x, so its hypothenuse is
[tex]\sqrt{6^2+x^2}=\sqrt{x^2+36}[/tex]
Now, the entire triangle has legs [tex]\sqrt{117}[/tex] and [tex]\sqrt{x^2+36}[/tex], and its hypothenuse is [tex]9+x[/tex]. Write the Pytagorean theorem one last time to get
[tex]117+(x^2+36)=(9+x)^2\iff x^2+153=81+18x+x^2 \iff 18x+81=153[/tex]
Subtract 81 from both sides to get
[tex]18x=72 \iff x=\dfrac{72}{18}=4[/tex]
Answer: x = 4
Step-by-step explanation:
The attached photo shows a clearer illustration of the given triangle.
Looking at the photo, assuming ∆BCD is a right angle triangle. To determine BC, we would apply Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side²
BC² = 9² + 6²
BC² = 81 + 36 = 117
BC = √117
To determine θ, we would apply the tangent trigonometric ratio.
Tan θ opposite side/adjacent side
Tan θ = 6/9 = 0.6667
θ = 33.6914
Considering ∆ABC,
Hypotenuse = x + 9
Adjacent = √117
Cos θ = adjacent side/ hypotenuse
Cos 33.6914 = √117/(x + 9)
Cross multiplying, it becomes
0.8320 = √117/(x + 9)
x + 9 = √117/0.8320
x + 9 = 13
x = 13 - 9 = 4
What is the strength of an electric field that will balance the weight of a 9.0 gg plastic sphere that has been charged to -1.6 nCnC ? Express your answer to two significant figures and include the appropriate units.
Answer: The strength of an electric field is E = - 0,05.10⁹ N/C.
Step-by-step explanation: According to the question, the plastic sphere is in equilibrium in an electric field. This sugests that the forces acting on the sphere, which are Gravitational Force (Fg) and Electric Force (Fe) are also in equilibrium, denotating Fg=Fe.
As Fg = m . g, with m = 0,009kg and g= 9,8m/s², we have Fg = 0,0882N.
Knowing the value of Fe, the strength of the electric field can be calculated as
E = Fe/Q, in which Q is the electric charge.
E = (0,0882) / (-1,6·10⁻⁹)
E = - 0,05·10⁹N/C
Luna Company accepted credit cards in payment for $7,950 of services performed during July 2018. The credit card company charged Luna a 1.55 percent service fee; it paid Luna as soon as it received the invoices. Required Based on this information alone, what is the amount of net income earned during the month of July? (Do not round intermediate values. Round final answer to 2 decimal places.)
Answer:
$7826.78
Step-by-step explanation:
Total income = 7950
With a service fee charge of 1.55%, the service fee charge = [tex]1.55\%\times7950 = \dfrac{1.55}{100}\times7950 = 123.225[/tex]
Net income = 7950 - 123.225 = 7826.775 = $7826.78
An alternative solution:
Service charge = 1.55%
Net income = (100 - 1.55)% × 7950
= 98.45% × 7950 = [tex]\dfrac{98.45}{100}\times7950 = 7826.775=7826.78[/tex]
Answer:
Step-by-step explanation:
Accepted credit= $ 7950
Charges for services =1.55% of the total
7950 - 1.55% of 7950
7950 - (1.55/100)*7950
7950 - 123.225
7826.775
7826,78 two decimal places
This is the net income earned during the month of July
The median weight of a boy whose age is between 0 and 36 months can be approximated by the function w (t )equals 8.38 plus 1.51 t minus 0.0069 t squared plus 0.000254 t cubed, where t is measured in months and w is measured in pounds. Use this approximation to find the following for a boy with median weight in parts a) through c) below. a) The rate of change of weight with respect to time.
Answer:
a) W'(t) = 1.51 -0.0138t + 0.000762t² pounds/day
Step-by-step explanation:
The median weight of a boy with age between 0 and 36 months is given by:
[tex]W(t) = 8.38+1.51t-0.0069t^2 + 0.000254t^3[/tex]
To find the rate of change of weight with respect to time, that is, the change in weight measured in pounds caused by a unit change in time, measured in days, simply derivate the weight function over time:
[tex]\frac{d(W(t)}{dt}= W'(t) = 1.51-0.0138t + 0.000762t^2[/tex]
The rate of change is 1.51 -0.0138t + 0.000762t² pounds/day.
(3 points) In class we described the anti-malarial drug artemisinin (structure given below). What is the active functional group on the drug that is most responsible for its potency?
Answer: QINGHAOSU
Step-by-step explanation:Artemisinin is an antimalarial (Drug used to cure Malaria) drug whose active ingredient QINGHAOSU was isolated in the 1970s from the Plant called Artemisia annua by a Chinese Physician.
Artemisinin has been in use in ancient Chinese communities since the 4th century to cure Diseases. Artemisinin is potent in killing several forms of the Plasmodium specie and has been used to derive other antimalarial Drugs in use today like Artemeter and Artesunate.
The original price of a toy boat was $50. The boat is marked up 15% before it’s sold. What is the selling price of the boat?
Answer: the selling price of the boat is $57.5
Step-by-step explanation:
The original price of a toy boat was $50. The boat is marked up 15% before it’s sold. This means that the amount by which the original price of the toy boat was increased would be
15/100 × 50 = 0.15 × 50 = $7.5
The selling price of the toy boat would be the sum of its original price and the amount by which it was marked up. It becomes.
50 + 7.5 = $57.5
An urn contains 6 red balls and 3 blue balls. One ball is selected at random and is replaced by a ball of the other color. A second ball is then chosen. What is the conditional probability that the first ball selected is red, given that the second ball was red?
Answer:
0.5882 or 58.82%
Step-by-step explanation:
The probability that both balls were red (A) is:
[tex]P(A)=\frac{6}{9}*\frac{5}{9}=0.3704[/tex]
The probability that the first ball was blue and the second ball was red (B) is:
[tex]P(B) = \frac{3}{9}*\frac{7}{9}=0.2593[/tex]
The conditional probability that the first ball selected is red, given that the second ball was red is:
[tex]P = \frac{P(A)}{P(A)+P(B)}=\frac{0.3704}{0.3704+0.2593} =0.5882[/tex]
One percent of a certain model of television have defective speakers. Suppose 500 televisions of this model are ready to ship. Find an approximate probability that 5 to 8 televisions (inclusive) in the shipment have defective speakers (round off to second decimal place).
Answer:
49.34% probability that 5 to 8 televisions (inclusive) in the shipment have defective speakers
Step-by-step explanation:
For each television, there are only two possible outcomes. Either they have defective speakers, or they do not. The probabilities of each television having defective speakers are independent from each other. So we use the binomial probability distribution to solve this problem.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
In this problem we have that:
[tex]p = 0.01, n = 500[/tex]
Find an approximate probability that 5 to 8 televisions (inclusive) in the shipment have defective speakers
This is
[tex]P(5 \leq X \leq 8) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 5) = C_{500,5}.(0.01)^{5}.(0.99)^{495} = 0.1764[/tex]
[tex]P(X = 6) = C_{500,6}.(0.01)^{6}.(0.99)^{494} = 0.1470[/tex]
[tex]P(X = 7) = C_{500,7}.(0.01)^{7}.(0.99)^{493} = 0.1048[/tex]
[tex]P(X = 8) = C_{500,8}.(0.01)^{8}.(0.99)^{492} = 0.0652[/tex]
[tex]P(5 \leq X \leq 8) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) = 0.1764 + 0.1470 + 0.1048 + 0.0652 = 0.4934[/tex]
49.34% probability that 5 to 8 televisions (inclusive) in the shipment have defective speakers
The approximate probability that 5 to 8 out of 500 televisions have defective speakers is 0.49. This was calculated using the binomial distribution with n = 500 and p = 0.01. We summed P(X = 5), P(X = 6), P(X = 7), and P(X = 8) to find the result.
To find the approximate probability that 5 to 8 televisions out of 500 have defective speakers, we can use the binomial distribution.
Let X be the random variable representing the number of defective televisions in the shipment. Since 1% of the televisions are defective, the probability of a television being defective is p = 0.01, and the sample size is n = 500.The probability mass function for a binomial distribution is given by:
[tex]P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)[/tex]
where C(n, k) is the binomial coefficient.
We need to calculate P(5 ≤ X ≤ 8), which is P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8).
Using a binomial calculator or statistical software, we get:
P(X = 5) ≈ 0.1755P(X = 6) ≈ 0.1447P(X = 7) ≈ 0.1040P(X = 8) ≈ 0.0681Summing these probabilities gives:
P(5 ≤ X ≤ 8) ≈ 0.1755 + 0.1447 + 0.1040 + 0.0681
≈ 0.4923
Therefore, the approximate probability that 5 to 8 televisions have defective speakers is 0.49 (rounded to two decimal places)
For a certain casino slot machine comma the odds in favor of a win are given as 27 to 73. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive. The probability is (round to two decimal places as needed).
Answer:
The probability is 0.27
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this problem, we have that:
Odds of a win are 27 to 73.
This means that for each 27 games that you are expcted to win, you are also expected to lose 73.
So
Desired outcomes:
27 wins
Total outcomes:
27 + 73 = 100 games
Probability
[tex]P = \frac{27}{100} = 0.27[/tex]
Answer:
The probability is 0.27
An apple juice producer buys all his apples from a conglomerate of apple growers in one northwestern state. The amount of juice obtained from each of these apples is approximately normally distributed with a mean of 2.25 ounces and a standard deviation of 0.15 ounce. Between what two values (in ounces) symmetrically distributed around the population mean will 80 percent of the apples fall?
A. [2.13, 2.37]
B. [2.10, 2.40]
C. [2.06, 2.44]
D. [1.95, 2.55]
Answer:
[tex]z=-1.28<\frac{a-2.25}{0.15}[/tex]
And if we solve for a we got
[tex]a=2.25 -1.28*0.15=2.058[/tex]
So the value of height that separates the bottom 10% of data from the top 90% is 2.06.
For the upper limit since the distribution is symmetrical we can do this:
[tex]z=1.28<\frac{a-2.25}{0.15}[/tex]
And if we solve for a we got
[tex]a=2.25 +1.28*0.15=2.442[/tex]
So the value of height that separates the bottom 90% of data from the top 10% is 2.44.
And the best answer for this case would be:
C. [2.06, 2.44]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the amount of juice of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(2.25,0.15)[/tex]
Where [tex]\mu=2.25[/tex] and [tex]\sigma=0.15[/tex]
For this case we want the limits for the middle 80% values of the distribution. so then we need 100-80= 20% of the area in the tails and 10% on each tail since the distribution is symmetrical.
We can use this condition for the lower limits
[tex]P(X>a)=0.9[/tex] (a)
[tex]P(X<a)=0.1[/tex] (b)
Both conditions are equivalent on this case. We can use the z score again in order to find the value a.
As we can see on the figure attached the z value that satisfy the condition with 0.1 of the area on the left and 0.9 of the area on the right it's z=-1.28. On this case P(Z<-1.28)=0.1 and P(z>-1.28)=0.9
If we use condition (b) from previous we have this:
[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.1[/tex]
[tex]P(z<\frac{a-\mu}{\sigma})=0.1[/tex]
But we know which value of z satisfy the previous equation so then we can do this:
[tex]z=-1.28<\frac{a-2.25}{0.15}[/tex]
And if we solve for a we got
[tex]a=2.25 -1.28*0.15=2.058[/tex]
So the value of height that separates the bottom 10% of data from the top 90% is 2.06.
For the upper limit since the distribution is symmetrical we can do this:
[tex]z=1.28<\frac{a-2.25}{0.15}[/tex]
And if we solve for a we got
[tex]a=2.25 +1.28*0.15=2.442[/tex]
So the value of height that separates the bottom 90% of data from the top 10% is 2.44.
And the best answer for this case would be:
C. [2.06, 2.44]
Classify each of the narratives below based on whether the mean or median provides a better description of the center of its distribution. global population.a. Age of first marriage for the population of a major city. b. Age of natural death for the population of a major city. c. Hours of sleep per day for an American adult. d. Caloric intake per day for an American adult. e. IQ scores for the population of a major city. f. Commute time per day for an American adult.
Answer:
Mean ;
Age of natural death for the population of a major cityHours of sleep for an American adultIQ scores for the population of a major city.Median;
Age of first marriage for the population of a major cityCaloric intake per day for an American adultCommute time per day for an American adultStep-by-step explanation:
The mean is used when the data under consideration is more of quantitative and in which the data is devoid of outliers as such the values are assumed to follow a normal distribution.
The median on the other hand is considered when the data are more of qualitative and usually contain outliers. Median on the other hand is best used when there is a skewed symmetry in the values given.
Mean ;
Age of natural death for the population of a major cityHours of sleep for an American adultIQ scores for the population of a major city.Median;
Age of first marriage for the population of a major cityCaloric intake per day for an American adultCommute time per day for an American adultWhether mean or median provides a better description of a data set depends on the skewness and outliers in the data. Generally, the mean is more sensitive to outliers whereas the median can better represent the central tendency of skewed distributions.
Explanation:In statistics, mean and median are two measures of central tendency. The mean is the average of the data points, while the median is the middle value. Whether the mean or median provides a better description depends on the distribution of the data.
A. Age of first marriage for the population of a major city: Here, mean may be a better metric as this data is likely normally distributed.B. Age of natural death for the population of a major city: Median can provide a better description, as the age of death might have outlying values which could skew the mean.C. Hours of sleep per day for an American adult: Mean can provide a better understanding since sleep hours are typically normally distributed.D. Caloric intake per day for an American adult: This may be more skewed with outliers, so the median might be more appropriate.E. IQ scores for the population of a major city: Here, the distribution is likely to be normal, so mean would be a good measure.F. Commute time per day for an American adult: Given potential outliers (long commutes), the median might be more appropriate.Learn more about Statistics here:https://brainly.com/question/31538429
#SPJ3
Slow response times by paramedics, firefighters, and policemen can have serious consequences for accident victims. In the case of life-threatening injuries, victims generally need medical attention within 8 minutes of the accident. Several cities have begun to monitor emergency response times. In one such city, the mean response time to all accidents involving life-threatening injuries last year was m = 6.7 minutes. Emergency personnel arrived within 8 minutes on 78% of all calls involving life-threatening injuries last year. The city manager shares this information and encourages these first responders to do better. At the end of the year, the city manager selects an SRS of 400 calls involving life-threatening injuries and examines the response times. Awful accidents (a) State hypotheses for a significance test to determine whether first responders are arriving within 8 minutes of the call more often. Be sure to define the parameter of interest. (b) Describe a Type I error and a Type II error in this setting and explain the consequences of each. (c) Which is more serious in this setting: a Type I error or a Type II error? Justify your answer.
Answer:
a)
[tex]H_0: \pi\geq0.78\\\\H_a: \pi<0.78[/tex]
b) The Type I error occurs when we reject a null hypothesis that is actually true. In this case, it means we conclude that the arrival time have improved, when it didn't.
The Type II error occurs when we accept a null hypothesis that is actually false. In this case, although the arrival times have really improved, the evidence from the sample was not enough to show that improvement.
c) In this case, the Type I error is more serious, because it gives the wrong impression of improvement and no further actions will be taken to reduce the times.
Step-by-step explanation:
a) If you want to determine if the responders are arriving within 8 minutes of the call more often, you have to evaluate the proportion of accidents in which the arrival time is less than 8 minutes and compare it with the known proportion of π=0.78.
The sample parameter "p: proportion of accidents with arrival time of 8 minutes or less" will be used to test the hypothesis.
The null and alternative hypothesis will be:
[tex]H_0: \pi\geq0.78\\\\H_a: \pi<0.78[/tex]
Final answer:
The hypotheses for a significance test to determine whether first responders are arriving more often within 8 minutes are H0: p = 0.78 and HA: p > 0.78, with p representing the proportion of calls responded to within this timeframe. A Type I error involves mistakenly concluding an improvement, while a Type II error occurs by overlooking an actual improvement. The potential demotivating effect of a Type II error may render it more serious in this context.
Explanation:
The question seems to revolve around the concept of hypothesis testing in statistics and how it applies to the emergency response times in a city. The parameter of interest would be the proportion of emergency calls responded to within 8 minutes. So for part (a), the hypotheses could be stated as follows:
H0: p = 0.78 (The proportion of calls responded to within 8 minutes is 78% as it was last year.)
HA: p > 0.78 (The proportion of calls responded to within 8 minutes has increased from last year.)
In part (b), a Type I error would occur if the city concludes that the proportion of calls responded to within 8 minutes has increased when in reality, it has not. The consequence of a Type I error would be misallocating resources based on false success. A Type II error would occur if the city fails to recognize an actual improvement in response times. The consequence of this could lead to a lack of recognition and continued encouragement for first responders who have actually improved.
Part (c) asks which error is more serious. A Type II error may be considered more serious in this setting, as failing to acknowledge and react to an actual improvement could demotivate emergency personnel and affect future performances, possibly leading to life-threatening delays for accident victims.