A piece of clay sits 0.10 m from the center of a potter’s wheel. If the potter spins the wheel at an angular speed of 15.5 rad/s, what is the magnitude of the centripetal acceleration of the piece of clay on the wheel?

Answers

Answer 1

Answer:

[tex]a=24.025\ m/s^2[/tex]    

Explanation:

Given that

Distance from the center ,r= 0.1 m

The angular speed ,ω = 15.5 rad/s

We know that centripetal acceleration is given as

a=ω² r

a=Acceleration

r=Radius

ω=angular speed

a=ω² r

Now by putting the values in the above equation we get

[tex]a=15.5^2\times 0.1\ m/s^2[/tex]

[tex]a=24.025\ m/s^2[/tex]

Therefore the acceleration of the clay will be [tex]a=24.025\ m/s^2[/tex].


Related Questions

The voltage across a conductor is increasing at a rate of 2 volts/min and the resistance is decreasing at a rate of 1 ohm/min. Use I = E/R and the Chain Rule to find the rate at which the current passing through the conductor is changing when R = 20 ohms and E = 70 volts.

Answers

Answer:

3.5 amperes

Explanation:

I = E/R

I = ?

E = 70volts

R = 20 Ohms

Therefore , I = 70/20

= 3.5 amperes

A 220 g , 23-cm-diameter plastic disk is spun on an axle through its center by an electric motor.What torque must the motor supply to take the disk from 0 to 1800 rpm in 4.6 s ?

Answers

Final answer:

The torque required by the motor to spin a 220g, 23-cm-diameter plastic disk from 0 to 1800 rpm in 4.6 seconds, without considering the external forces, is 0.431 Nm.

Explanation:

In solving the question,

Torque

is our primary interest. We first need to convert rpm to rad/s since Torque calculations require SI units. The conversion can be done by the formula ω = 2π (frequency), and frequency is simply rpm/60. Hence, 1800 rpm is equivalent to 188.50 rad/s. Now, we use the Kinematics equation ω = ω

0

+ αt to calculate angular acceleration (α), where ω

0

is the initial angular velocity, and it is 0 rad/s in this case as the disk starts from rest, ω is the final angular velocity and is 188.50 rad/s, while t is the time of 4.6 seconds. Solving this gives us α=41 rad/s

2

. The Torque can now be calculated using τ=Iα where I (moment of inertia for a disk) = 0.5*m*r

2

. Substituting the values of m, r and α gives a Torque value of 0.431 Nm.

Learn more about Torque here:

https://brainly.com/question/33222069

#SPJ12

In flow over cylinders, why does the drag coefficient suddenly drop when the flow becomes turbulent?

Answers

For a body with an aerodynamic profile to reach a low resistance coefficient, the boundary layer around the body must remain attached to its surface for as long as possible. In this way, the wake produced becomes narrow. A high shape resistance results in a wide wake. In this type of bodies, if there is turbulence, the drag coefficient increases because the pressure drag appears.

However, in the case of cylinders, it happens that the separation point of the boundary layer will move towards to the rear of the body, which will reduce the size of the wake and there will reduce the magnitude of the pressure drag.

Final answer:

In fluid dynamics, the sudden drop in drag coefficient when flow over a cylinder becomes turbulent is due to the shift from laminar to turbulent flow. As turbulence increases and 'energizes' the slower boundary layer of fluid on the cylinder, the overall drag is reduced and the drag coefficient decreases.

Explanation:

In flow over cylinders, the sudden drop in the drag coefficient when the flow becomes turbulent can be attributed to the shift from laminar to turbulent flow itself. As the speed or Reynolds number (N'R) increases, the type of flow changes, and so does the behavior of the viscous drag exerted on the moving object.

In laminar flow, layers flow without mixing and the viscous drag is proportional to speed. As the Reynolds number enters the turbulent range, the drag begins to increase according to a different rule, becoming proportional to speed squared. This turbulent flow introduces eddies and swirls that mix fluid layers.

However, beyond a point in the turbulent flow regime, the drag coefficient starts to decrease. This is because the turbulence begins to 'energize' the generally slower, boundary layer of fluid that clings to the surface of the cylinder, which reduces the overall strength of the drag created by the flow. Moreover, these energized layers of fluid effectively 'smooth out' the obstructive effect of the cylinder, leading to a sudden decrease in the drag coefficient.

Learn more about Fluid Dynamics here:

https://brainly.com/question/11937154

#SPJ12

A soda can with a volume of 345 mL is 6.5 cm in diameter and has a mass of 20g. The can is half-filled with water, and when it is placed in a tub of water it is found to float upright. What length of the can is above the water level?

Answers

Answer:

0.0473m

Explanation:

345 ml = 0.000354 m3

6.5 cm = 0.065 m

20g = 0.02 kg

Since can is half filled with water, the water volume is 0.000354 / 2 = 0.000177 m cubed

Let water density be 1000kg/m3, the mass of this half-filled water is

1000*0.000177 = 0.177 kg

The total water-can system mass is 0.177 + 0.02 = 0.197 kg

For the system to stay balanced, this mass would be equal to the mass of the water displaced by the can submerged

The volume of water displaced, or submerged can is

0.197 / 1000 = 0.000197 m cubed

Then the volume of the can that is not submerged, aka above water level is

0.000354 - 0.000197 = 0.000157 m cubed

The base area of the can is

[tex]A = \pi r^2 = \pi (d/2)^2 = \pi (0.065)^2 = 0.003318 m squared[/tex]

The length of the can that is above water is

0.000157 / 0.003318 = 0.0473 m

Final answer:

The half-filled soda can displaces the equivalence of its own weight in water when placed in it. Half of the soda can's total volume will always be submerged since it is only half-filled i.e., half of the can's mass is displacing water.

Explanation:

The subject of this problem is the principles of buoyancy and volume. A half-filled soda can placed in water will displace its own weight of the water. The length of the can above the water level can be calculated using an understanding of volume and displacement.

First, calculate the volume of the can using the formula for the volume of a cylinder V = πr²h, where r is radius and h is height. Given the diameter of the can is 6.5 cm, the radius is 3.25 cm. The height can be calculated by rearranging the volume formula to find h. We know that the can's complete volume is 345 mL, so h (full can height) = V / (πr²).

From this, we can calculate the height of the can that is submerged in water. Since the can is half-filled, it displaces half its full weight in water. So half of the can's total volume will always be submerged. Therefore, the length of the can above the water will be half the total height of the can.

Learn more about Buoyancy and Volume here:

https://brainly.com/question/9582777

#SPJ11

A 0.23 kg mass on a spring vibrates with amplitude 25 cm and frequency 1.7 Hz. Calculate (b) the speed at which the mass passes through equilibrium and (b) the total energy of the oscillation. (Answers: 0.82 J, 2.7 m/s).

Answers

Answer:

a) 2.67 m/s

b) 0.82 J

Explanation:

Amplitude A = 25 cm = 0.25 m

The period of the motion is the inverse of the frequency

[tex]T = \frac{1}{f} = \frac{1}{1.7} = 0.588 s[/tex]

So the angular frequency

[tex]\omega = \frac{2\pi}{T} = \frac{2\pi}{0.588} = 10.68 rad/s[/tex]

The speed at the equilibrium point is the maximum speed, at

[tex]v = \omega A = 10.68 * 0.25 = 2.67 m/s[/tex]

The spring constant can be calculated using the following

[tex]\omega^2 = \frac{k}{m} = \frac{k}{0.23}[/tex]

[tex]k = 0.23\omega^2 = 0.23*10.68^2 = 26.24 N/m[/tex]

The total energy of the oscillation is

[tex]E = kA^2 / 2 = 26.24*0.25^2 / 2 = 0.82 J[/tex]

A charge +1.9 μC is placed at the center of the hollow spherical conductor with the inner radius 3.8 cm and outer radius 5.6 cm. Suppose the conductor initially has a net charge of +3.8 μC instead of being neutral. What is the total charge (a) on the interior and (b) on the exterior surface?

Answers

To solve this problem we will apply the concepts related to load balancing. We will begin by defining what charges are acting inside and which charges are placed outside.

PART A)

The charge of the conducting shell is distributed only on its external surface. The point charge induces a negative charge on the inner surface of the conducting shell:

[tex]Q_{int}=-Q1=-1.9*10^{-6} C[/tex]. This is the total charge on the inner surface of the conducting shell.

PART B)

The positive charge (of the same value) on the external surface of the conducting shell is:

[tex]Q_{ext}=+Q_1=1.9*10^{-6} C[/tex]

The driver's net load is distributed through its outer surface. When inducing the new load, the total external load will be given by,

[tex]Q_{ext, Total}=Q_2+Q_{ext}[/tex]

[tex]Q_{ext, Total}=1.9+3.8[/tex]

[tex]Q_{ext, Total}=5.7 \mu C[/tex]

(a) The total charge on the interior of the spherical conductor is -1.9 μC.

(b) The total exterior charge of the spherical conductor is 5.7 μC.

The given parameters;

charge at the center of the hollow sphere, q = 1.9 μC inner radius of the spherical conductor, r₁ = 3.8 cmouter radius of the spherical conductor, r₂ = 5.6 cm

The total charge on the interior is calculated as follows;

[tex]Q_{int} = - 1.9 \ \mu C[/tex]

The total exterior charge is calculated as follows;

[tex]Q_{tot . \ ext} = Q + Q_2\\\\Q_{tot . \ ext} = 1.9 \ \mu C \ + \ 3.8 \ \mu C\\\\Q_{tot . \ ext} = 5.7 \ \mu C[/tex]

Learn more about total charge on hollow spherical conductor here: https://brainly.com/question/14909974

A race car travels 765 km around a circular sprint track of radius 1.263 km. How many times did it go around the track?

Answers

Answer:

It will go 96 times around the track.

Explanation:

Given that,

Distance covered by the race car, d = 765 km

Radius of the circular sprint track, r = 1.263 km

Let n times did it go around the track. It is given by :

[tex]n=\dfrac{d}{C}[/tex]

C is the circumference of the circular path, [tex]C=2\pi r[/tex]

[tex]n=\dfrac{d}{2\pi r}[/tex]

[tex]n=\dfrac{765}{2\pi \times 1.263}[/tex]

[tex]n=96.4[/tex]

Approximately, n = 96

So, it will go 96 times around the track. Hence, this is the required solution.

With a track radius of 1.263 km, the car completes approximately 96.50 laps.

The formula for the circumference (C) of a circle is: C = 2πr, where r is the radius of the circle, and π (pi) is approximately 3.14159. Using the given radius of 1.263 km, we can calculate the circumference of the track:

C = 2π(1.263 km) ≈ 2(3.14159)(1.263 km) ≈ 7.932 km (rounded to three decimal places).

Divide the total distance traveled by the circumference of the track:

Number of laps = Total distance traveled ÷ Circumference of the track
Number of laps = 765 km ÷ 7.932 km ≈ 96.50 laps.

Therefore, the race car would have completed approximately 96.50 laps around the track.

At what point in the cardiac cycle is pressure in the ventricles the highest (around 120 mm Hg in the left ventricle)?

Answers

Answer:

Ventricular systole

Explanation:

This contraction causes an increase in pressure inside the ventricles, being the highest during the entire cardiac cycle. The ejection of blood contained in them takes place. Therefore, blood is prevented from returning to the atria by increasing pressure, which closes the bicuspid and tricuspid valves.

Final answer:

The highest pressure in the ventricles occurs during the ventricular systole phase of the cardiac cycle, when the ventricles are contracting to pump blood out to the body.

Explanation:

The pressure in the ventricles is highest during the ventricular systole phase of the cardiac cycle. At this point, the ventricles have filled up with blood and are contracting to pump this blood out into the body. This contraction greatly increases the pressure in the ventricles, leading to a peak pressure of around 120 mm Hg in the left ventricle, depending on the individual.

Learn more about Cardiac Cycle here:

https://brainly.com/question/31667097

#SPJ3

A support wire is attached to a recently transplanted tree to be sure that it stays vertical. The wire is attached to the tree at a point 1.50 m from the ground and the wire is 2.00 m long. What is the angle between the tree and the support wire?

Answers

Answer:

Explanation:

Given

Wire attached to the tree at a point [tex]h=1.5\ m[/tex] from ground

Length of wire [tex]L=2\ m[/tex]

From diagram,

Using trigonometry

[tex]\sin \theta =\frac{Perpendicular}{Hypotenuse}[/tex]

[tex]\sin \theta =\frac{1.5}{2}[/tex]

[tex]\theta =48.59[/tex]

Angle between Tree and support[tex]=90-48.59=41.41^{\circ}[/tex]      

Final answer:

To find the angle between the tree and the support wire, we can use trigonometry. Given that the wire is 2.00 m long and attached to the tree at a point 1.50 m from the ground, the angle between the tree and the support wire is 41.1 degrees.

Explanation:

To find the angle between the tree and the support wire, we can use trigonometry. The wire and the ground form a right triangle, with the wire as the hypotenuse and the vertical distance from the ground to the point of attachment as the opposite side. Using the Pythagorean theorem, we can find the length of the base of the triangle, which is the distance between the point of attachment and the tree.

Given that the wire is 2.00 m long and attached to the tree at a point 1.50 m from the ground, we can calculate the length of the base using the Pythagorean theorem: square root of (2.00^2 - 1.50^2) = 1.30 m.

Now we can use the trigonometric function tangent to find the angle between the tree and the support wire: tangent(angle) = opposite/adjacent, where the opposite side is 1.30 m and the adjacent side is 1.50 m. Solving for the angle, we get: angle = arctan(1.30/1.50) = 41.1 degrees (rounded to one decimal place).

Learn more about Angle between tree and support wire here:

https://brainly.com/question/34406111

#SPJ3

Two stones resembling diamonds are suspected of being fakes. To determine if the stones might be real, the mass and volume of each are measured. Both stones have the same volume, 0.15 cm3. However, stone A has a mass of 0.52 g, and stone B has a mass of 0.42 g. If diamond has a density of 3.5 g/cm3, could either of the stones be real diamonds?

Answers

Answer:

stone A is diamond.

Explanation:

given,

Volume of the two stone =  0.15 cm³

Mass of stone A = 0.52 g

Mass of stone B = 0.42 g

Density of the diamond =  3.5 g/cm³

So, to find which stone is gold we have to calculate the density of both the stone.

We know,

[tex]density[/tex][tex]\density = \dfrac{mass}{volume}[/tex]

density of stone A

[tex]\rho_A = \dfrac{0.52}{0.15}[/tex]

[tex]\rho_A = 3.467\ g/cm^3[/tex]

density of stone B.

[tex]\rho_B = \dfrac{0.42}{0.15}[/tex]

[tex]\rho_B = 2.8\ g/cm^3[/tex]

Hence, the density of the stone A is the equal to Diamond then stone A is diamond.

Final answer:

Neither of the stones is a real diamond because their densities, calculated using mass and volume, do not match the density of a real diamond.

Explanation:

The determination of whether a stone is a real diamond or a fake can be made by calculating the density of the stone. Density is calculated as the mass of an object divided by its volume. So, for stone A, the density is 0.52 g / 0.15 cm3 = 3.47 g/cm3, and for stone B, the density is 0.42 g / 0.15 cm3 = 2.8 g/cm3. The density of a real diamond is 3.5 g/cm3. Hence, neither stone A nor stone B is a real diamond as their densities are less than the density of a real diamond.

Learn more about Density here:

https://brainly.com/question/34199020

#SPJ3

A 50 kg box hangs from a rope. What is the tension in the rope if: The box is at rest? The box moves up at a steady 5.0 m/s? The box has vy=5.0 m/s and is speeding up at 5.0 m/s2? The box has vy=5.0 m/s and is slowing down at 5.0 m/s2?

Answers

Answer:

(a) [tex]T_{1}=490N[/tex]

(b) [tex]T_{2}=240N[/tex]

Explanation:

For Part (a)

Given data

The box moves up at steady 5.0 m/s

The mas of box is 50 kg

As ∑Fy=T₁ - mg=0

[tex]T_{1}=mg\\T_{1}=(50kg)(9.8m/s^{2} ) \\T_{1}=490N[/tex]

For Part(b)

Given data

[tex]v_{iy}=5m/s\\ a_{y}=-5.0m/s^{2}[/tex]

As ∑Fy=T₂ - mg=ma

[tex]T_{2}=mg+ma_{y}\\T_{2}=m(g+ a_{y})\\T_{2}=50kg(9.8-5.0) \\T_{2}=240N[/tex]

Final answer:

The tension in the rope varies depending on whether the box is at rest, moving at a constant velocity, or accelerating. The tension equals the weight of the box when it's at rest or moving constantly, but it will be increased or decreased by the net force caused by acceleration when the box is speeding up or slowing down.

Explanation:

If the box is at rest, the tension in the rope is equal to the force of gravity. We can calculate this using the formula T = mg, where m is the mass of the box and g is the acceleration due to gravity. Therefore, T = (50 kg)(9.8 m/s²) = 490 N.

When the box moves upwards with a constant velocity, the tension in the rope also equals the weight of the box (T = mg), so the tension will stay the same at 490 N.

However, when the box is speeding up, the net force is the product of mass and acceleration. In this case, acceleration = 5.0 m/s². Using the equation Fnet = ma, we find that Fnet = (50 kg)(5 m/s²) = 250 N. The total tension now includes both the tension due to the box's weight and the additional force due to the acceleration. Therefore, T = T(g) + Fnet = 490 N + 250 N = 740 N.

Lastly, when the box is slowing down at 5.0 m/s², the net force acts in the opposite direction of the initial velocity. Using the same calculations, we find Fnet = 250 N. But this force now reduces the tension originally caused by the box's weight, so the total tension in the rope becomes T = T(g) - Fnet = 490 N - 250 N = 240 N.

Learn more about Tension in a Rope here:

https://brainly.com/question/30794023

#SPJ11

In the vertical jump, an athlete starts from a crouch and jumps upward as high as possible. Even the best athletes spend little more than 1.00 s in the air (their "hang time"). Treat the athlete as a particle and let ymax be his maximum height above the floor. To explain why he seems to hang in the air, calculate the ratio of the time he is above ymax/2 to the time it takes him to go from the floor to that height. Ignore air resistance.

Answers

The answer details the vertical velocity needed and the horizontal distance required for a basketball player to complete a jump.

Vertical velocity: To rise 0.750 m above the floor, the athlete needs a vertical velocity of 5.43 m/s.

Horizontal distance: The athlete should start his jump 2.27 m away from the basket to reach his maximum height at the same time as he reaches the basket.

A rock is thrown at an angle of 60∘ to the ground. If the rock lands 25m away, what was the initial speed of the rock? (Assume air resistance is negligible. Your answer should contain the gravitational constant ????.)

Answers

Answer:

[tex]v_0 = 16.82\ m/s[/tex]

Explanation:

given,

angle at which rock is thrown = 60°

rock lands at distance,d = 25 m

initial speed of rock, = ?

In horizontal direction

distance = speed x time

d = v₀ cos 60° t

25 = v₀ cos 60° t............(1)

now,

in vertical direction

displacement in vertical direction is zero

using equation of motion

[tex]s = ut +\dfrac{1}{2}gt^2[/tex]

[tex]0 =v_0 sin 60^0 t - 4.9 t^2[/tex]

[tex]v_o sin 60^0 = 4.9 t[/tex]

[tex]t = \dfrac{v_0 sin 60^0}{4.9}[/tex]

putting the value of t in equation (1)

[tex]25 = v_0 cos 60^0\times \dfrac{v_0 sin 60^0}{4.9}[/tex]

[tex]25 =\dfrac{v_0^2cos 60^0 sin 60^0}{4.9}[/tex]v

[tex]v_0^2 = 282.90[/tex]

[tex]v_0 = 16.82\ m/s[/tex]

Hence, the initial speed of the rock is equal to 16.82 m/s

"An elevator is moving upward with a speed of 11 m/s. Three seconds later, the elevator is still moving upward, but its speed has been reduced to 5.0 m/s. What is the average acceleration of the elevator during the 3.0 s interval?

Answers

Answer:

Average acceleration = - 2 m/s^2

Explanation:

Given data:

Initial velocity = 11 m/s

Final velocity = 5.0 m/s

duration of change in velocity = 3 sec

Average acceleration [tex]= \frac{v - u}{\Delta t}[/tex]

Average acceleration [tex]= \frac{5 - 11}{3} = -2 m/s^2[/tex]

Average acceleration = - 2 m/s^2

here negative sign indicate that acceleration is proceed in downward direction.

A cart starts at x = +6.0 m and travels towards the origin with a constant speed of 2.0 m/s. What is it the exact cart position (in m) 3.0 seconds later?

Answers

Answer:

At the origin (x' = 0 m)

Explanation:

Note: From the question, when the cart travels towards the origin, the magnitude of its exact position reduces with time.

The formula of speed is given as

S = d/t................. Equation 1

Where S = speed of the cart, d = distance covered by the cart over a certain time. t = time taken to cover the distance.

make d the subject of the equation,

d = St ................. Equation 2

Given: S = 2.0 m/s, t = 3.0 s

Substitute into equation 2

d = 2(3)

d = 6 m.

From the above, the cart covered a distance of 6 m in 3 s.

The exact position of the cart = Initial position-distance covered

x' = x-d............ Equation 3

Where x' = exact position of the cart 3 s later, x = initial position of the cart, d = distance covered by the cart in 3.0 s.

Given: x = +6.0 m, d = 6 m.

Substitute into equation 3

x' = +6-6

x' = 0 m.

Hence the cart will be at 0 m (origin) 3 s later

Final answer:

The cart will be at a position of 12.0 m after 3.0 seconds.

Explanation:

The cart is initially at a position of +6.0 m and is moving towards the origin with a constant speed of 2.0 m/s. We can use the formula for position to find its exact position after 3.0 seconds.

The formula for position is position = initial position + (velocity × time).

Plugging the values into the formula, we get:

position = 6.0 m + (2.0 m/s × 3.0 s) = 6.0 m + 6.0 m = 12.0 m.

Learn more about Cart position after time here:

https://brainly.com/question/21340597

#SPJ3

A point charge with a charge q1 = 2.30 μC is held stationary at the origin. A second point charge with a charge q2 = -5.00 μC moves from the point x= 0.170 m , y= 0 to the point x= 0.250 m , y= 0.250 m .
How much work W is done by the electric force on the moving point charge?
Express your answer in joules. Use k = 8.99×109 N*m^2/ C^2 for Coulomb's constant: k=1/(4*pi*epsilon0)

Answers

Final answer:

The work done by the electric force on the moving point charge is approximately -5.09 × 10^-5 J.

Explanation:

Work done by the electric force is given by the equation W = q1 * q2 * (1/r1 - 1/r2), where q1 and q2 are the charges, r1 is the initial distance, and r2 is the final distance.

In this case, q1 = 2.30 μC, q2 = -5.00 μC, r1 = 0.170 m, and r2 = 0.250 m. Plugging these values into the equation and solving for W, we get:

W = (2.30 μC) * (-5.00 μC) * [1/√(0.170^2) - 1/√(0.250^2 + 0.250^2)]

After simplifying, the work done is approximately -5.09 × 10^-5 J.

Learn more about Work done here:

https://brainly.com/question/35147902

#SPJ3

Suppose the radius of the Earth is given to be 6378.01 km. Express the circumference of the Earth in m with 5 significant figures.

Round to 5 sig figs with trailing zeros --> 40074000

Answers

The mathematical description that fits to find the circumference of a circle (Approximation we will make to the earth considering it Uniform) is,

[tex]\phi = 2\pi r[/tex]

Here,

r = Radius

The radius of the earth is 6378.01 km or 6378010m

Replacing we have that the circumference of the Earth is

[tex]\phi = 2\pi (6378010m)[/tex]

[tex]\phi = 40074000 m[/tex]

[tex]\phi = 40074*10^3 m[/tex]

Therefore the circumference of the Earth in m with 5 significant figures is [tex]40074*10^3 m[/tex] and using only trailing zeros the answer will be [tex]40074000m[/tex]

A parallel-plate capacitor is connected to a battery. After it becomes charged, the capacitor is disconnected from the battery and the plate separation is increased.
What happens to the potential difference between the plates?

A) More information is needed to answer this question
B) The potential difference between the plates stays the same.
C) The potential difference between the plates decreases.
D) The potential difference between the plates increases.

Answers

Answer:

D) The potential difference between the plates increases.

Explanation:

The capacitance of a parallel plate capacitor having plate area A and plate separation d is C=ϵ0A/d.  

Where ϵ0 is the permittivity of free space.  

A capacitor with increased distance, will have a new capacitance C1=ϵ0kA/d1

Where d1 = nd  

since d1 > d

therefore n >1

n is a factor derived as a result of the increased distance

Therefore the new capacitance becomes:

       

              C1=ϵ0A/d1

        C1= ϵ0A/nd

        C1= C/n  -------1

Where C1 is the capacitance with increased distance.

This implies that the charge storing capacity of the capacitor with increased plate separation decreases by a factor of (1/n) compared to  that of the capacitor with original distance.

Given points

The charge stored in the original capacitor Q=CV

The charge stored in the original capacitor after inserting dielectric  Q1=C1V1

The law of conservation of energy states that the energy stored is constant:

i.e Charge stored in the original capacitor is same as charge stored after the dielectric is inserted.

Charge before plate separation increase same as after plate separation increase

Q   = Q1

CV = C1V1

  CV = C1V1  -------2

We derived C1=C/n in equation 1. Inserting this into equation 2

   CV = (CV1)/n

   V1 = n(CV)/C

        = n V

Since n > 1 as a result of the derived new distance, the new voltage will increase

The largest building in the world by volume is the boeing 747 plant in Everett, Washington. It measures approximately 632 m long, 710 yards wide, and 112 ft high.

What is the cubic volume in feet, convert your result from part a to cubic meters?

Answers

Explanation:

Given that,

The dimensions of the largest building in the world is 632 m long, 710 yards wide, and 112 ft high. It basically forms a cuboid. The volume of a cuboidal shape is given by :

Since,

1 meter = 3.28084 feet

632 m = 2073.49 feet

1 yard= 3 feet

710 yards = 2130 feet

V = lbh

[tex]V=2073.49 \ ft\times 2130\ ft\times 112\ ft[/tex]

[tex]V=494651774.4\ ft^3[/tex]

[tex]V=4.94\times 10^8\ ft^3[/tex]

Also,

[tex]V=(4.94\times 10^8\ ft^3)(\dfrac{1\ m}{3.281})^3[/tex]

[tex]V=1.39\times 10^7\ m^3[/tex]

Hence, this is the required solution.

What is the sign and magnitude of a point charge that produces a potential of −2.2 V at a distance of 1 mm?

Answers

The sign of the point charge that produces a potential of -2.00 V at a distance of 1.00 mm is negative, and its magnitude is calculated to be approximately -2.22×10-13 C using Coulomb's law.

Explanation:

The question pertains to determining the sign and magnitude of a point charge based on the electric potential it produces at a specific distance. The electric potential (V) at a distance (r) from a point charge (q) is given by the equation V = k * q / r, where k is Coulomb's constant (k = 8.988×109 N·m2/C2). Since the potential is negative (-2.00 V), the point charge must have a negative sign. To find the magnitude, we rearrange the formula to solve for q: q = V * r / k.

Plugging in the values gives q = (-2.00 V * 1.00×10-3 m) / 8.988×109 N·m2/C2, which calculates to a charge magnitude of approximately -2.22×10-13 C.



The probable question is in the image attached.

A uniform horizontal electric field of 1.8 × 105 N/C causes a ball that is suspended from a light string to hang at an angle of 23° from the vertical. If the mass of the ball is 5.0 grams, what is the magnitude of its charge?

Answers

Answer:

[tex]1.15669\times 10^{-7}\ C[/tex]

Explanation:

[tex]\theta[/tex] = Angle with which the electric field is hung = 23°

m = Mass of ball = 5 g

E = Electric field = [tex]1.8\times 10^5\ N/C[/tex]

T = Tension

q = Charge

We have the equations

[tex]Tcos\theta=mg[/tex]

[tex]Tsin\theta=qE[/tex]

Dividing the equations

[tex]tan\theta=\dfrac{mg}{qE}\\\Rightarrow q=\dfrac{mgtan\theta}{E}\\\Rightarrow q=\dfrac{5\times 10^{-3}\times 9.81\times tan23}{1.8\times 10^5}\\\Rightarrow q=1.15669\times 10^{-7}\ C[/tex]

The magnitude of the charge is [tex]1.15669\times 10^{-7}\ C[/tex]

A 30.0-g ice cube at its melting point is dropped into an aluminum calorimeter of mass 100.0 g in equilibrium at 24.0 °C with 300.0 g of an unknown liquid. The final temperature is 4.0 °C . What is the heat capacity of the liquid?

Answers

Answer:

Cu = 1453.72J/Kg°C

The heat capacity of the liquid is 1453.72J/Kg°C

Explanation:

At equilibrium, assuming no heat loss to the surrounding we can say that;

Heat gained by ice + heat gained by cold water = heat loss by hot unknown liquid (24°C) + heat loss by aluminium calorimeter.

Given;

Mass of ice = mass of cold water = mc = 30g = 0.03kg

Mass of hot unknown liquid mh= 300g = 0.3kg

Mass of aluminium calorimeter ma= 100g = 0.1 kg

change in temperature cold ∆Tc = (4-0) = 4°C

Change in temperature hot ∆Th = 24-4 = 20°C

Specific heat capacity of water Cw= 4186J/Kg°C

Specific heat capacity of aluminium Ca = 900J/kg°C

Specific heat capacity of unknown liquid Cu =?

Heat of condensation of ice Li = 334000J/Kg

So, the statement above can be written as.

mcLi + mcCw∆Tc = maCa∆Th + mhCu∆Th

Making Cu the subject of formula, we have;

Cu = [mcLi + mcCw∆Tc - maCa∆Th]/mh∆Th

Substituting the values we have;

Cu = (0.03×334000 + 0.03×4186×4 - 0.1×900×20)/(0.3×20)

Cu = 1453.72J/Kg°C

the heat capacity of the liquid is 1453.72J/Kg°C

At a lab investigating fire extinguisher foams, a heavy ball is accidentally dropped into a deep vat of foam from a crane 6.10 m above the foam. After entering the foam, it sinks to the bottom with a constant velocity equal to the velocity with which it hit the foam. The ball reaches the bottom 3.20 s after it is released. How deep is the vat?

Answers

Answer:

22.8077659955 m deep

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s² = a

[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 6.1+0^2}\\\Rightarrow v=10.9399268736\ m/s[/tex]

[tex]v=u+at\\\Rightarrow t=\dfrac{v-u}{a}\\\Rightarrow t=\dfrac{10.9399268736-0}{9.81}\\\Rightarrow t=1.11518112881\ s[/tex]

Time taken to fall through the foam

[tex]3.2-1.11518112881=2.08481887119\ s[/tex]

Distance is given by

[tex]s=vt\\\Rightarrow s=10.9399268736\times 2.08481887119\\\Rightarrow s=22.8077659955\ m[/tex]

The vat is 22.8077659955 m deep

The depth of the vat obtained is 44.076 m

Data obtained from the question Height of crane above the vat = 6.10 mTime to reach the bottom of the vat from the crane = 3.20 sDepth of vat =?

Determination of the height from the crane to the bottom of the vat Time to reach the bottom of the vat from the crane (t) = 3.20 sAcceleration due to gravity (g) =? Height from crane to bottom of vat (H) =?

H = ½gt²

H = ½ × 9.8 × 3.2²

H = 4.9 × 10.24

H = 50.176 m

How to determine the depth of the vatHeight from crane to bottom of vat (H) = 50.176 mHeight of crane above the vat (h) = 6.10 mDepth of vat =?

Depth of vat = H – h

Depth of vat = 50.176 – 6.10

Depth of vat = 44.076 m

Learn more about motion under gravity:

https://brainly.com/question/20385439

The oscilloscope is set to measure 2 volts per division on the vertical scale. The oscilloscope display a sinusoidal voltage that vertically covers 3.6 divisions from positive to negative peak. What is the peak to peak voltage of this signal

Answers

Answer: 7.2V

Explanation:

Peak values or peak to peak voltage are calculated from RMS values, which implies VP = VRMS × √2, (assuming the source is a pure sine wave).

Since it's a sinusoidal voltage and measuring from an oscilloscope, the peak to peak voltage is gotten thus:

No of division X Volts/divisions

So, 3.6 x 2V = 7.2V

Final answer:

The peak-to-peak voltage of a sinusoidal signal covering 3.6 divisions on an oscilloscope set to 2 volts per division is 7.2 volts.

Explanation:

The question involves calculating the peak-to-peak voltage of a sinusoidal signal observed on an oscilloscope where the vertical scale is set to 2 volts per division. Given that the signal covers 3.6 divisions from positive to negative peak, we calculate the peak-to-peak voltage by multiplying the number of divisions the signal spans by the voltage per division.

To find the peak-to-peak voltage, we use the formula: Peak-to-Peak Voltage = Number of Divisions × Voltage per Division. Thus, the peak-to-peak voltage of the signal is 3.6 divisions × 2 volts/division = 7.2 volts.

A proton accelerates from rest in a uniform electric field of 680 N/C. At one later moment, its speed is 1.30 Mm/s (nonrelativistic because v is much less than the speed of light). (a) Find the acceleration of the proton.

Answers

Answer:

Acceleration, [tex]a=6.51\times 10^{10}\ m/s^2[/tex]                                                

Explanation:

Given that,

Electric field, E = 680 N/C

Speed of the proton, v = 1.3 Mm/s

We need to find the acceleration of the proton. We know that the force due to motion is balanced by the electric force as :

[tex]qE=ma[/tex]

a and m are the acceleration and mass of the proton.

[tex]a=\dfrac{qE}{m}[/tex]

[tex]a=\dfrac{1.6\times 10^{-19}\times 680}{1.67\times 10^{-27}}[/tex]

[tex]a=6.51\times 10^{10}\ m/s^2[/tex]

So, the acceleration of the proton is [tex]a=6.51\times 10^{10}\ m/s^2[/tex]. Hence, this is the required solution.

The barometric pressure at sea level is 30 in of mercury when that on a mountain top is 29 in. If the specific weight of air is assumed constant at 0.0075 lb/ft3 , calculate the elevation of the mountain top.

Answers

To solve this problem we will apply the concepts related to pressure, depending on the product between the density of the fluid, the gravity and the depth / height at which it is located.

For mercury, density, gravity and height are defined as

[tex]\rho_m = 846lb/ft^3[/tex]

[tex]g = 32.17405ft/s^2[/tex]

[tex]h_1 = 1in = \frac{1}{12} ft[/tex]

For the air the defined properties would be

[tex]\rho_a = 0.0075lb/ft^3[/tex]

[tex]g = 32.17405ft/s^2[/tex]

[tex]h_2 = ?[/tex]

We have for equilibrium that

[tex]\text{Pressure change in Air}=\text{Pressure change in Mercury}[/tex]

[tex]\rho_m g h_1 = \rho_a g h_2[/tex]

Replacing,

[tex](846)(32.17405)(\frac{1}{12}) = (0.0075)(32.17405)(h_2)[/tex]

Rearranging to find [tex]h_2[/tex]

[tex]h_2 = \frac{(846)(32.17405)(\frac{1}{12}) }{(0.0075)(32.17405)}[/tex]

[tex]h = 9400ft[/tex]

Therefore the elevation of the mountain top is 9400ft

Final answer:

The elevation of the mountain top is approximately 13,972 feet.

Explanation:

The difference in barometric pressure between the sea level and the top of the mountain represents the hydrostatic pressure exerted by the column of air. We can calculate the elevation of the mountain top by using the equation:

ΔP = ρgh

Where ΔP is the difference in pressure, ρ is the density of the air, g is the acceleration due to gravity, and h is the elevation. Rearranging the equation, we have:

h = ΔP / (ρg)

Substituting the given values, we have:

h = (30 - 29) in / (0.0075 lb/ft³ * 32.2 ft/sec²)

Simplifying the equation, we get:

h ≈ 13,972 ft

Therefore, the elevation of the mountain top is approximately 13,972 feet.

A metallic sphere has a charge of +3.1 nC. A negatively charged rod has a charge of −4.0 nC. When the rod touches the sphere, 9.2×109 electrons are transferred. What are the charges of the sphere and the rod now?

Answers

Answer:

Q'sphere=2.7*10^-9 C

Q'rod=-4.7*10^-9 C

Explanation:

given data:

charge on metallic sphere Qsphere=3.1*10^-9 C                ∴1n=10^-9

charge on rod Qrod =-4*10^-9 C  

no of electron n= 9.2×10^9 electrons

To find:

we are asked to find the charges Q'sphere on the sphere and Q'rod on the rod after the rod touches the sphere.

solution:

the total charge transferred when the rod touches the sphere equal to the no of electrons transferred multiplied by the charge of each electron:

Q(transferred)= nq_(e)

                       =(9.2×10^9)(1.6×10^-19)

                       =-1.312×10^-9 C

because electron are negative they move from the negatively charged rod to the positively charged rod so that new charged of the sphere is:

      Q'sphere =Qsphere+Q(transferred)

                       =(3.1*10^-9 )-(1.312×10^-9)

                       =2.7*10^-9 C

similarly the new charge of the rod is:

            Q'rod = Qrod-Q(transferred)

                      = (-6*10^-9 C)-(1.312*10^-9 C)

                      = -4.7*10^-9 C

∴note: there maybe error in calculation but the method is correct.

Final answer:

Upon contact, a metallic sphere and a negatively charged rod share their charges until equilibrium. The total charge of -0.9 nC is equalized, with 9.2×109 electrons changing the sphere's charge to +1.628 nC and the rod's charge to -2.528 nC.

Explanation:

When two charged objects come into contact, they share their charges until equilibrium is reached. This means each object will end up with the average charge. In the case of the metallic sphere with a charge of +3.1 nC and the negatively charged rod with a charge of -4.0 nC, the total charge before contact is (-4.0 nC) + (+3.1 nC) = -0.9 nC.

Since 9.2×109 electrons are transferred, we calculate the charge transferred using the charge of one electron, which is approximately -1.6×10-19 C. Multiplying the number of electrons by the charge of one electron gives us the total charge transferred: 9.2×109 × -1.6×10-19 C/electron ≈ -1.472 nC.

This charge is added to the metallic sphere and subtracted from the rod. So, the new charge on the sphere is +3.1 nC + (-1.472 nC) = +1.628 nC, and the charge on the rod is -4.0 nC - (-1.472 nC) = -2.528 nC. Both charges are now closer in magnitude, representing the sharing of charges due to contact.

A capacitor is created by two metal plates. The two plates have the dimensions L = 0.49 m and W = 0.48 m. The two plates are separated by a distance, d = 0.1 m, and are parallel to each other.

Answers

Answer:

A) The expression of the electric field halfway between the plates, if the plates are in the plane Y-Z is:

[tex]\vec{E}=\displaystyle \frac{q}{LW\varepsilon_0}\vec{x}[/tex]

B) The expression for the magnitude of the electric field E₂ just in front of the plate two ends is:

[tex]|E_2|=\displaystyle \frac{q}{2LW\varepsilon_0}[/tex]

C) The charge density is:

[tex]\sigma_2=-4.2517\cdot10^{-3}C/m^2[/tex]

Completed question:

A capacitor is created by two metal plates. The two plates have the dimensions L = 0.49 m and W = 0.48 m. The two plates are separated by a distance, d = 0.1 m, and are parallel to each other.

A) The plates are connected to a battery and charged such that the first plate has a charge of q. Write an express of the electric field, E, halfway between the plates

B) Input an expression for the magnitude of the electric field, E₂. Just in front of plate two END

C) If plate two has a total charge of q =-1 mC, what is its charge density, σ in C/m2?

Explanation:

A) The expression of the field can be calculated as the sum of the field produced by each plate. Each plate can be modeled as 2 parallel infinite metallic planes. Because this is a capacitor connected by both ends to a battery, the external planes have null charge (the field outside the device has to be null by definition of capacitor). This means than the charge of each plate has to be distributed in the internal faces. Because this es a metallic surface and there is no external field, we can consider a uniform charge distribution (σ=cte). Therefore in this case for each plane:

[tex]\sigma_i=\displaystyle \frac{q_i}{LW}[/tex]

The field of an infinite uniform charged plane is:

[tex]\vec{E_i}=\displaystyle \frac{\sigma_i}{2\varepsilon_0}sgn(x-x_{0i})\vec{x} =\frac{q_i}{2LW\varepsilon_0}sgn(x-x_{0i})\vec{x}[/tex]

In this case, inside the capacitor, if the plate 1 is in the left and the plate 2 is in the right, the field for 0<x<d is:

[tex]\vec{E_1}\displaystyle=\frac{q}{2LW\varepsilon_0}sgn(x})\vec{x}=\frac{q}{2LW\varepsilon_0}\vec{x}[/tex]

[tex]\vec{E_2}\displaystyle=\frac{-q}{2LW\varepsilon_0}sgn(x-d})\vec{x}=\frac{q}{2LW\varepsilon_0}\vec{x}[/tex]

[tex]\vec{E}=\vec{E_1}+\vec{E_2}[/tex]

[tex]\vec{E}=\displaystyle \frac{q}{LW\varepsilon_0}\vec{x}[/tex]

B) we already obtain the expression of the field E₂ inside the space between the plates. Even if we are asked the expression just in front of the plate and not inside, the expression for |E₂| is still de same.

C) As seen above, we already obtain the charge density expression. Therefore we only have to replace the variables for the numerical values.

The electric field, E, halfway between the plates is (σ / ε₀). The electric field is written in terms of permittivity and surface charge density.

Given:
Length, L = 0.49 m

Width, W = 0.48 m

Distance, d = 0.1 m

Here:

E = electric field

σ = surface charge density

ε₀ = permittivity of free space

We must determine the surface charge density on each plate since the plates are wired to a battery and charged so that the first plate has a charge of q.

The area of the plate is:

Area of each plate (A) = L x W = 0.49 m x 0.48 m = 0.2352 m²

The surface charge density is given by:

σ = q / A

The electric field is computed as:

E = (σ / ε₀)

Hence, the electric field, E, halfway between the plates is (σ / ε₀). The electric field is written in terms of permittivity and surface charge density.

To learn more about the Electric field, here:

https://brainly.com/question/14058164

#SPJ3

#Complete question is:

A capacitor is created by two metal plates. The two plates have the dimensions L = 0.49 m and W = 0.48 m. The two plates are separated by a distance, d = 0.1 m, and are parallel to each other.

A) The plates are connected to a battery and charged such that the first plate has a charge of q. Write an express of the electric field, E, halfway between the plates

A water balloon is launched at a speed of (15.0+A) m/s and an angle of 36 degrees above the horizontal. The water balloon hits a tall building located (18.0+B) m from the launch pad. At what height above the ground level will the water balloon hit the building? Calculate the answer in meters (m) and rounded to three significant figures.

Answers

Answer:

The question is incomplete, below is the complete question,

"A water balloon is launched at a speed of (15.0+A) m/s and an angle of 36 degrees above the horizontal. The water balloon hits a tall building located (18.0+B) m from the launch pad. At what height above the ground level will the water balloon hit the building? Calculate the answer in meters (m) and rounded to three significant figures. A=12, B=2"

Answe:

12.1m

Explanation:

Below are the data given

Speed, V=(15+A) = 15+12=27m/s

Angle of projection, ∝=36 degree

Distance from building = 18+B=18+2=20m

Since the motion describe by the object is a projectile motion, and recall that  in projectile motion, motion along the horizontal path has zero acceleration and motion along the vertical path is under gravity,

the Velocity along the horizontal path is define as

[tex]V_{x}=Vcos\alpha \\V_{x}=27cos36\\V_{x}=21.8m/s[/tex]

the velocity along the Vertical path is

[tex]V_{y}=Vsin\alpha \\V_{y}=27sin36 \\V_{y}=15.87m/s[/tex]

Since the horizontal distance from the point of projection to the building is 20m, we determine the time it takes to cover this distance using the simple equation of motion

[tex]Velocity=\frac{distance }{time }\\ Time,t=27/21.8\\t=1.24secs[/tex]

The distance traveled along the vertical axis is given as

[tex]y=V_{y}t-\frac{1}{2}gt^{2}\\ t=1.24secs,\\V_{y}=15.87m/s\\g=9.81m/s[/tex]

if we substitute values, we arrive at

[tex]y=15.87*1.24-\frac{1}{2}9.81*1.24^{2}\\y=19.66-7.57\\y=12.118\\y=12.1m[/tex]

Hence the water balloon hit the building at an height of 12.1m

A person walks in the following pattern: 2.9 km north, then 2.8 km west, and finally 4.4 km south. (a) How far and (b) at what angle (measured counterclockwise from east) would a bird fly in a straight line from the same starting point to the same final point

Answers

Answer:

(a) Magnitude =3.18 km

(a) Angle =28.2°

Explanation:

(a) To find magnitude of this vector recognize

[tex]R_{x}=-2.8 km\\R_{y}=-1.5km[/tex]

Use Pythagorean theorem

[tex]R=\sqrt{(R_{x})^{2}+(R_{y})^{2} }\\ R=\sqrt{(-2.8)^{2}+(-1.5)^{2} }\\ R=3.18km[/tex]

(b)To find the angle use the trigonometric property

[tex]tan\alpha =\frac{opp}{adj}\\\ tan\alpha =\frac{R_{y} }{R_{x}}\\\alpha =tan^{-1}(\frac{(-1.5)}{(-2.8)})\\\alpha =28.2^{o}[/tex]

Other Questions
true or false? Stratified squamous epithelium forms the surface of the skin, the lining of the mouth, and the lining of the esophagus. For a certain casino slot machine comma the odds in favor of a win are given as 27 to 73. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive. The probability is (round to two decimal places as needed). Read the following story summary.A kingdom in ancient Greece is under attack by gorgons:hideous snake-haired women whose faces can turn allwho look upon them to stone. The king begs theneighboring city-states for help. Eventually, a hero from anearby island sets sail for the troubled kingdom.Which possible outcome is most clearly determined by the story's setting?OA. The hero will discover that the gorgons are peaceful.B. The hero will receive indirect assistance from the gods.OC. The hero will learn the true meaning of bravery and valor.OD. The hero will find a technological solution to the problem. Please write a poem, rap, or creative story using 15 of the 30 words. The words have to be used correctly in the context of African American Literature Need some help doing this question, thanks! Which is a component of a phospholipid?carbon ring hydrophilic headlong-chain alcoholamino acid please help will give five star* or brainlist *only works for computer In 1626, Dutchman Peter Minuit purchased Manhattan Island from a local Native American tribe. Historians estimate that the price he paid for the island was about $24 worth of goods, including beads, trinkets, cloth, kettles, and axe heads. Many people find it laughable that Manhattan Island would be sold for $24, but you need to consider the future value (FV) of that price in more current times. If the $24 purchase price could have been invested at a 5% annual interest rate, what is its value as of 2012 (386 years later)? Which number is irrational?A. 3/17B. Square root of 25C. 0.666D. Square root of 33 Why is it helpful for scientists to compate substrate samples in the arson case discussed in the video Pharmacy technicians working in a retail pharmacy need to be able to to help patients locate over-the-counter (OTC) nonprescription treatments for the common cold. How will you assists a patient that asks for an OTC medication for their common cold? Sort the sentences based on whether they are correct or incorrect. Many plants are poisonous because their stems and leaves contain oxalic acid, H2C2O4, or sodium oxalate, Na2C2O4; when ingested, these substances cause swelling of the respiratory tract and suffocation. A standard analysis for determining the amount of oxalate ion, C2O42-, in a sample is to precipitate this species as calcium oxalate, which is insoluble in water. Write the net ionic equation for the reaction between sodium oxalate and calcium chloride, CaCl2, in aqueous solution. (Use the lowest possible coefficients. Omit states-of-matter in your answer.) Carrying capacity refers to the number of people who can be supported by the resources of the surrounding region. Identify whether the following adaptive strategies have high or low carrying capacities___________ Simplify:2(d + 3) + 3(d 3)A.5d 1B.5d 3C.5d + 15D.6d 3 In 1944 Avery, MacLeod, and McCarty performed transformation experiments using live, harmless bacteria and extracts from virulent bacteria treated with various enzymes. Which of the following enzymes were used and why? (A) Proteases and RNases to rule out protein and RNA as the transforming factors (B) Lipase (an enzyme that facilitates the breakdown of lipids) to rule out lipoproteins as the transforming factor (C) Kinase (an enzyme that facilitates transfer of a phosphate group from ATP to a substrate molecule) to show that transformation is phosphorylation dependent (D) ATPase to show that transformation is not dependent on ATP Depriving children of food and water is considered neglect.Please select the best answer from the choices provided.TF ASAP PENN FOSTER CORRECT ANSWER ONLYJacques-Louis David was an extremely influential artist in his time because he wasA. involved in the French revolution.B. widely recognized and admired, attracting many students. C. a founder of the baroque style in France. D. a student of Franois BoucherA is wrong Air in human lungs has a temperature of 37.0C and a saturation vapor density of 44.0 g/m. (a) If 2.00 L of air is exhaled and very dry air inhaled, what is the maximum loss of water vapor by the person? (b) Calculate the partial pressure of water vapor having this density, and compare it with the vapor pressure of 6.31 10 N/m. Cube Root Function Question! 15 points! The graph of h(x) is a translation of f (x) = Root Index 3Which equation represents h(x)? Steam Workshop Downloader