A 2.50-l volume of hydrogen measured at â196 °c is warmed to 100 °c. calculate the volume of the gas at the higher temperature, assuming no change in pressure

Answers

Answer 1

To solve this we assume that the hydrogen gas is an ideal gas. Then, we can use the ideal gas equation which is expressed as PV = nRT. At a constant pressure and number of moles of the gas the ratio T/V is equal to some constant. At another set of condition of temperature, the constant is still the same. Calculations are as follows:

T1 / V1 = T2 / V2

V2 = T2 x V1 / T1

V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K

V2 = 12.09 L

Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.

Answer 2
Final answer:

The problem is about Charles's Law, which states the volume of a gas is directly proportional to its absolute temperature, while pressure is constant. With the data provided, using this concept in a formula, we calculate the volume of hydrogen to be roughly 12.16 Liters at 100°C.

Explanation:

The question pertains to Charles's Law in Physics, specifically about gases. Charles's Law states that the volume of a given gas mass is directly proportional to its absolute temperature, provided that the pressure is kept constant.

For the problem given, the initial volume (V₁) of the hydrogen gas is 2.50 L, and its initial temperature is -196°C, which must be converted to Kelvin (K) by adding 273 (equating to 77K). The gas is warmed to 100°C, or 373K (T₂).

To calculate the volume of the gas at the higher temperature (V₂), we use the formula for Charles's Law: V₁/T₁ = V₂/T₂. Substituting in the provided values, we get (2.50 L / 77 K) = V₂ / 373K. Solving for V₂, we find that the volume of the hydrogen gas at 100°C is approximately 12.16 L.

Learn more about Charles's Law here:

https://brainly.com/question/16927784

#SPJ3


Related Questions

A conducting sphere has a net charge of 4.8  1017

c. what is the approximate number of excess electrons on the sphere?

Answers

A net charge of the sphere is the overall charge of the sphere. If it says that there are excess electrons, it means that the net charge is negative. Also, the quantity of charge of sub particles are very small so that must be 10 to the power of negative 17. So, I think the net charge is -4.8×10⁻¹⁷ Coulombs.

Then, we use the electrical charge of an electron which is equal to 1.60217662×10⁻¹⁹ C/electron. Therefore,

-4.8×10⁻¹⁷ Coulombs * 1 electron/-1.60217662×10⁻¹⁹ C = 299.592

Therefore, there are approximately 300 excess electrons.

Final answer:

To find the number of excess electrons on a conducting sphere with a net charge of -4.8 × 10⁻¹⁷ C, the total charge is divided by the charge of a single electron, resulting in approximately 300 excess electrons.

Explanation:

The question asks about the number of excess electrons on a conducting sphere with a net charge of –4.8 × 10⁻¹⁷ C. To find the number of excess electrons, we need to divide the total charge by the charge of a single electron, which is approximately 1.6 × 10⁻¹⁹ C. The calculation is as follows

Number of electrons = Total charge / Charge of one electron

= (-4.8 × 10⁻¹⁷ C) / (1.6 × 10⁻¹⁹ C)

= 3 × 10² electrons.

Therefore, the sphere has approximately 300 excess electrons.

Suppose you perform an experiment at 21.5 oc and 1.00 atm and generate helium gas in the laboratory. what do you expect the molar volume of the helium to be?

Answers

At 21.5 °C and 1.00 atm, the molar volume of helium gas is expected to be slightly higher than 22.41 L, the molar volume of an ideal gas at STP due to the increase in temperature and the behavior of helium closely resembling an ideal gas.

If you experiment to generate helium gas at 21.5 °C (which is 294.65 K) and 1.00 atm, you would expect the molar volume of the helium to be close to the value for an ideal gas under standard temperature and pressure conditions. This is because helium behaves relatively closely to an ideal gas due to its small, non-polar, monatomic nature. At standard temperature (0 °C or 273.15 K) and pressure (1 atm), the molar volume of an ideal gas is 22.41 L. However, because the experiment is carried out at a slightly higher temperature, the molar volume will be slightly higher than 22.41 L due to the direct relationship between temperature and volume described by Charles's law.

To calculate the molar volume at the given conditions, you would use the ideal gas law equation: PV = nRT. You can rearrange this equation to solve for molar volume (V/n) and find that V/n = RT/P. With R as the ideal gas constant (0.0821 L·atm/(K·mol)), T as the absolute temperature in Kelvin, and P as the pressure in atm, you can calculate the molar volume of helium at 21.5 °C and 1.00 atm.

Calculate the change in the enthalpy and the change in entropy when 1 mole of sic is heated from 25 ° c to 1000 °
c. the constant pressure molar heat capacity of sic varies with temperature as

Answers

The change in enthalpy for 1 mole of SiC, heated from 25°C to 1000°C, is calculated to be 1306.5 J using the constant pressure molar heat capacity formula.

Calculating the change in enthalpy of SiC:

1. Identifying the relevant information:

Substance: 1 mole of SiC (silicon carbide)

Temperature change: 25°C to 1000°C

Constant pressure molar heat capacity (cp): 1.34 J/mol°C

2. Recalling the enthalpy equation:

ΔH = n * cp * (T2 - T1)

where:

ΔH is the change in enthalpy (J)

n is the number of moles

cp is the constant pressure molar heat capacity (J/mol°C)

T1 is the initial temperature (°C)

T2 is the final temperature (°C)

3. Applying the equation to the given information:

n = 1 mole

cp = 1.34 J/mol°C

T1 = 25°C

T2 = 1000°C

4. Substituting the values and calculating ΔH:

ΔH = 1 mole * 1.34 J/mol°C * (1000°C - 25°C)

ΔH = 1306.5 J

Therefore, the change in enthalpy for 1 mole of SiC when heated from 25°C to 1000°C is 1306.5 J.

Complete question:

Calculate the change in the enthalpy and the change in entropy when 1 mole of SiC is heated from 25°C to 1000°C·The constant pressure molar heat capacity ofSiC varies with temperature as cp = 50.79 + 1.97 x 10^-3T-4.92 x 10^6T^-2 + 8.20 x 10^9 T-3 J/mol-K

At a hot spot, heat causes melting of a small portion of the ______________, which then erupts to earth's surface

Answers

The answer should be Mantle

Answer: Mantle

Explanation:

What term describes a mixture of 42 percent gold, 20 percent silver, and 38 percent copper?

a) solute
b) alloy
c) solvent
d) electrolyte

Answers

The answer is B, alloy.

Calculate the standard emf of a cell that uses the mg/mg2+ and cu/cu2+ half-cell reactions at 25 °c. write the equation for the cell reaction that occurs under standard-state conditions and write the line notation for the cell.

Answers

The cell reaction that occurs is as follows:

 [tex]\boxed{{\text{Mg + C}}{{\text{u}}^{{\text{2 + }}}} \rightleftarrows {\text{M}}{{\text{g}}^{2 + }}{\text{ + Cu}}}[/tex]

The line notation of cell is as follows:

[tex]\left. {{\text{Mg}}\left( {\text{s}} \right)} \right|{\text{M}}{{\text{g}}^{2 + }}\left( {{a_{{\text{M}}{{\text{g}}^{2 + }}}}} \right)\left\| {{\text{C}}{{\text{u}}^{2 + }}\left( {{a_{{\text{C}}{{\text{u}}^{2 + }}}}} \right)\left| {{\text{Cu}}\left( {\text{s}} \right)} \right.} \right.[/tex]

The standard emf value of the cell is [tex]\boxed{2.7{\text{ V}}}[/tex].

Further Explanation:

Redox reaction:

It is a type of chemical reaction in which the oxidation states of atoms are changed. In this reaction, both reduction and oxidation are carried out at the same time. Such reactions are characterized by the transfer of electrons between the species involved in the reaction.

The general representation of a redox reaction is,

 [tex]{\text{X}} + {\text{Y}} \to {{\text{X}}^ + }+{{\text{Y}}^ - }[/tex]

The oxidation half-reaction can be written as:

[tex]{\text{X}} \to {{\text{X}}^ + } + {e^ - }[/tex]

The reduction half-reaction can be written as:

[tex]{\text{Y}} + {e^ - } \to {{\text{Y}}^ - }[/tex]  

Here, X is getting oxidized and its oxidation state changes from  to +1 whereas B is getting reduced and its oxidation state changes from 0 to -1.

The element which has higher oxidation potential is oxidized at anode and the element with the less oxidation potential is reduced at cathode in the cell.

The standard oxidation potential for [tex]{\text{Mg/M}}{{\text{g}}^{2 + }}[/tex] is  [tex]+ 2.363{\text{ V}}[/tex].

The standard oxidation potential for [tex]{\text{Cu/C}}{{\text{u}}^{2 + }}[/tex] is [tex]- 0.337{\text{ V}}[/tex].

Since [tex]{\text{Mg}}[/tex] has higher oxidation potential thus the oxidation of [tex]{\text{Mg}}[/tex] takes place at anode and reduction of [tex]{\text{C}}{{\text{u}}^{2 + }}[/tex] takes place at cathode.

The oxidation half-reaction of [tex]{\text{Mg/M}}{{\text{g}}^{2 + }}[/tex] can be written as:

[tex]{\text{Mg}} \to {\text{M}}{{\text{g}}^{2 + }} + 2{e^ - }[/tex]     ......(1)

The reduction half-reaction [tex]{\text{Cu/C}}{{\text{u}}^{2 + }}[/tex] can be written as:

[tex]{\text{C}}{{\text{u}}^{2 + }} + 2{e^ - } \to {\text{Cu}}[/tex]     ......(2)

Add reaction (1) and (2) and eliminate common terms to determine the net reaction for the given cell.

[tex]{\text{Mg + C}}{{\text{u}}^{{\text{2 + }}}} \rightleftarrows {\text{M}}{{\text{g}}^{2 + }}{\text{ + Cu}}[/tex]           ......(3)

The expression of the cell is written as follows:

[tex]\left. {{\text{Mg}}\left( {\text{s}} \right)} \right|{\text{M}}{{\text{g}}^{2 + }}\left( {{a_{{\text{M}}{{\text{g}}^{2 + }}}}} \right)\left\| {{\text{C}}{{\text{u}}^{2 + }}\left( {{a_{{\text{C}}{{\text{u}}^{2 + }}}}} \right)\left| {{\text{Cu}}\left( {\text{s}} \right)} \right.} \right.[/tex]                             ......(4)

The expression to calculate the standard emf of the cell is as follows:

[tex]E_{{\text{cell}}}^0 = E_{{\text{anode}}}^0 - E_{{\text{cathode}}}^0[/tex]                  ......(5)

                                                           

Substitute [tex]+ 2.363{\text{ V}}[/tex] for [tex]E_{{\text{anode}}}^0[/tex] and [tex]- 0.337{\text{ V}}[/tex] for [tex]E_{{\text{cathode}}}^0[/tex] in equation (5).

[tex]\begin{aligned}E_{{\text{cell}}}^0&=\left({ + 2.363{\text{ V}}}\right)-\left( { - 0.337{\text{ V}}} \right)\\&= 2.7{\text{ V}}\\\end{aligned}[/tex]        

Learn more:

1. Which occurs during the redox reaction? https://brainly.com/question/1616320

2. Oxidation and reduction reaction: https://brainly.com/question/2973661

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Electrochemistry

Keywords: Mg/M2+, Cu/Cu2+, half-cell reaction, standard emf of the cell, oxidation state, reduction, oxidation, redox reaction, transfer of electrons, reducing agents, oxidizing agents.

Final answer:

To calculate the standard emf of a cell with Mg/Mg2+ and Cu/Cu2+ at 25 °C, subtract the anode potential (-2.37 V) from the cathode potential (+0.34 V) to get +2.71 V, indicating a spontaneous reaction. The line notation for the cell is Mg(s) | Mg2+(aq) || Cu2+(aq) | Cu(s).

Explanation:

To calculate the standard emf of a cell using the Mg/Mg2+ and Cu/Cu2+ half-cell reactions at 25 °C, we use the standard reduction potentials from the electrochemical series. The standard reduction potential for the Mg2+ to Mg half-cell is -2.37 V and for the Cu2+ to Cu half-cell is +0.34 V. Because oxidation occurs at the anode and reduction at the cathode, the Mg/Mg2+ cell will act as the anode and the Cu/Cu2+ cell as the cathode.

The overall cell reaction, under standard conditions, is derived by combining the half-reactions:

Mg(s) -> Mg2+(aq) + 2e- (Oxidation)

Cu2+(aq) + 2e- -> Cu(s) (Reduction)

When combined, the overall reaction is:

Mg(s) + Cu2+(aq) -> Mg2+(aq) + Cu(s)

The standard cell potential (Ecell) is calculated by taking the difference between the standard reduction potentials of the cathode and anode:

Ecell = Ecathode(red) - Eanode(ox) = 0.34 V - (-2.37 V) = +2.71 V

The positive value of Ecell indicates that the reaction is spontaneous under standard conditions. The line notation for the cell is:

Mg(s) | Mg2+(aq) || Cu2+(aq) | Cu(s)

Two saturated aqueous solutions are prepared at 25 ºC.

One is made by dissolving lithium carbonate (Ksp = 8.15 x 10⁻⁴) in 100.0 mL of water until excess solid is present, while the other is prepared by dissolving lithium phosphate (Ksp = 2.37 x 10⁻⁴) in 200.0 mL of water until excess solid is present.

1) What is the molar concentration of Li¹⁺ in the lithium carbonate solution?

2) What is the molar concentration of Li¹⁺ in the lithium phosphate solution?

Please, show all calculation with comments. Thanks!

Answers

The equilibrium constant of solubility product, or Ksp, is the product of the solvated ions of a compound when dissolved in water.

Let us see the dissociation of Lithium Phosphate or (Li₂PO₄):

Li₂PO₄  ⇆ 2Li⁺ + PO₄²⁻

So, the Ksp for this dissociation is 

Ksp = [Li⁺]²[PO₄²⁻] = 8.15 ˣ 10⁻⁴

Since no amount of initial moles are known, let's just use the stoichiometric coefficients. The substances in '[]' are the molar concentrations (moles/liter). We let x be the moles of the substance dissociated:

[2x mol/0.1 L]²[x mol/0.1L] = 8.15 ˣ 10⁻⁴
x = 5.88ˣ10⁻3 mol
Hence, the concentration of [Li⁺] is 
[Li⁺] = 2(5.88ˣ10⁻3 mol) / 0.1 L
[Li⁺] = 0.118 M


The same procedure is applied to Lithium Carbonate (Li₂CO₃):
Li₂CO₃  ⇆ 2Li⁺ + CO₃²⁻

Ksp = [Li⁺]²[CO₃²⁻] = 2.37 ˣ 10⁻⁴
[2x mol/0.2 L]²[x mol/0.2L] = 8.15 ˣ 10⁻⁴
x = 7.797 ˣ 10⁻³ moles
Hence, the concentration of [Li⁺] is 
[Li⁺] = 2(7.797 ˣ 10⁻³ moles) / 0.2 L
[Li⁺] = 0.078 M

Which would increase the rate of dissolving? Check all that apply.

A) low temperature

B) little to no agitation

C) more surface area

D) high temperature

E) a lot of agitation

F) little surface area

Answers

The rate of dissolving would increase with: 
C) more surface area
D) high temperature
E) a lot of agitation

Explanation:

Rate of dissolving is the rate at which a solute is able to dissolve in a solvent.

Some factors which affect the rate of dissolving are as follows.

More surface area : When there are more number of particles then it means there is more surface area of solute present in the solution. Thus, there will be more number of collisions between the solute and solvent molecules. As a result, rate of dissolving increases.

High temperature : More is the increase in temperature more will be the kinetic energy gained by molecules. Thus, this will lead to greater number of collisions and as a result, rate of dissolving increases.

Lot of agitation : When we stir a solution vigorously or create a disturbance then there will be increase in number of collisions which will also lead to increase in rate of dissolving.

Thus, we can conclude that the rate of dissolving would increase when there is:

more surface area.high temperature. a lot of agitation.

An igneous rock contains a pb-206/u-238 mass ratio of 0.372. how old is the rock?

Answers

The age of the igneous rock with a Pb-206/U-238 mass ratio of 0.372 is approximately 1.7 billion years old, determined by the amount of U-238 that has decayed to Pb-206 and using the known half-life of U-238.

To determine the age of the igneous rock using its lead to uranium mass ratio, we apply the principles of radioactive decay, specifically the decay of Uranium-238 (U-238) into Lead-206 (Pb-206). Since each decay of U-238 produces one Pb-206, we can use this information to calculate the amount of U-238 that has decayed since the rock was formed. Knowing the half-life of U-238 is approximately 4.5 billion years, and the initial quantity of U-238 present would be equal to the sum of current U-238 and the Pb-206 produced from its decay.

The given Pb-206/U-238 mass ratio is 0.372. From this ratio, we can determine the fraction of U-238 that has decayed. Using the appropriate decay equation and the half-life, we can calculate the correct answer to be approximately 1.7 billion years, which is the approximate age of the rock.

The age of the rock is approximately 2.2 billion years.

To determine the age of the rock based on the Pb-206/U-238 mass ratio, we use the concept of radioactive decay and the uranium-lead (U-Pb) dating method.

Understanding Uranium-Lead Dating:

Uranium-238 (U-238) is a radioactive isotope that decays into lead-206 (Pb-206) through a series of radioactive decay steps.

The rate of decay of U-238 to Pb-206 is characterized by a half-life, which is the time it takes for half of the U-238 atoms to decay into Pb-206.

Using the Pb-206/U-238 Mass Ratio:

The Pb-206/U-238 mass ratio in the rock gives us information about the amount of lead-206 relative to uranium-238 at the time of rock formation.

The Pb-206/U-238 ratio changes over time due to the radioactive decay of uranium-238 into lead-206.

Calculating the Age:

The age of the rock can be calculated using the formula derived from radioactive decay principles.

We use the formula:

Age = log(Pb-206/U-238 ratio) / log(e^(λt) - 1)

Where:

λ is the decay constant of uranium-238.

t is the age of the rock in years.

Substituting Values:

Given that the Pb-206/U-238 mass ratio (R) = 0.372, we can rearrange the formula to solve for the age (t).

We use the decay constant (λ) of uranium-238.

Using Decay Constants:

The decay constant (λ) for uranium-238 is approximately 1.551 × 10⁻¹⁰ per year.

Calculating Age:

Substitute the values into the age formula to calculate the age of the rock:

Calculate log(0.372) ≈ -0.430.

Substitute the values into the age equation:

Age ≈ -0.430 / (1.551 × 10⁻¹⁰) ≈ 2.77 × 10⁹ years.

Final Answer:

The calculated age of the rock is approximately 2.77 × 10⁹ years, which is equivalent to about 2.2 billion years (since 1 billion years = 10⁹ years).

Therefore, based on the Pb-206/U-238 mass ratio of 0.372 in the igneous rock, the estimated age of the rock is approximately 2.2 billion years.

Argon crystallizes in the face-centered cubic arrangement at 40k. given that the atomic radius of argon is 191 pm, calculate the density of solid argon.

Answers

Molecular weight of 1 mole of Argon = 39.948 g
for face-centered cube = x = (√8)r and here r = 191 pm
so, x = √8 x 191 = 540 pm = 540 x 10^-10 cm
density = (39.948g / mol) x (unit cell / 540x10^-10 cm)^3 x (mol / 6.022x10^23 atoms) x (4 atoms / unit cell) = 1.69g/cm^3
so density of solid argon is 1.69g/cm^3

Final answer:

To calculate the density of solid argon at 40 K, we first determine the edge length of the unit cell using the atomic radius, then calculate the volume of the unit cell. We then find the mass of argon in the unit cell using its atomic weight and Avogadro's number and divide the mass by the volume to find the density.

Explanation:

To calculate the density of solid argon, we can follow these steps:

First, we need to know the edge length a of the face-centered cubic unit cell. Since argon has a face-centered cubic arrangement and the atomic radius is given as 191 pm, we can use the equation for the face-centered cubic structure a = 2√2×r, where r is the atomic radius.Next, we calculate the volume of the unit cell by cubing the edge length: V = a³.Since there are four argon atoms per face-centered cubic unit cell, we multiply the number of atoms by the atomic weight of argon (39.948 g/mol) to get the mass of argon contained within one unit cell.To find the density (ρ), we divide the mass of the unit cell by its volume and then convert the units to the desired kg/m³.Remember to use Avogadro's number (6.022×10²³ mol¹) when converting from grams per mole to grams per unit cell.

By using the appropriate equations and constants, we can find the value for the density of solid argon at 40 K.

Which of the following systems possesses the highest entropy?

A. a sugar crystal in a hot cup of coffee

B. a sugar cube in a hot cup of coffee

C. powdered sugar in a hot cup of coffee

D. no sugar in a hot cup of coffee

Answers

i think the C but im not sure about it

Answer: Option (C) is the correct answer.

Explanation:

Entropy means the degree of randomness in a substance or object. This means more is the kinetic energy of particles of an object more will be its entropy.

For example, powdered sugar will have more number of particles and when it is added in a hot cup of coffee then its molecules will gain kinetic energy.

As a result, more number of collisions will take place due to which rate of reaction will also increase. Hence, powdered sugar will readily dissolve in the coffee.

Therefore, we can conclude that powdered sugar in a hot cup of coffee systems possesses the highest entropy.

Aspirin was first synthesized in:

Answers

Aspirin was first synthesized in: 1897
1997 by Felix Hoffman

Ammonia can be produced via the chemical reaction n2(g)+3h2(g)?2nh3(g) during the production process, the production engineer determines the reaction quotient to be q = 3.56×10?4. if k = 6.02×10?2, what can be said about the reaction?

Answers

K represents the equilibrium constant while Q is the reaction quotient. The equilibrium constant is expressed as [NH3]^2/{[N2]*[H2]^3] based from the reaction where the terms are concentrations of the substances at equilibrium. The reaction quotient is expressed the same as the K, however, the terms are the concentrations of the substances at any point in time. From the given values of Q and K, we see that Q approaches to K in the reaction. So, Q is less than K which means that the product concentration is low as compared to that of the reactants. Also, it would mean that the reaction is still not in equilibrium and would proceed to the right.

The correct answer is c) The reaction is not at equilibrium and will proceed to the right.

To determine the direction in which the reaction will proceed, we need to compare the reaction quotient (Q) with the equilibrium constant (K):

If Q > K, the reaction will proceed to the left (towards reactants).

If Q = K, the reaction is at equilibrium.

If Q < K, the reaction will proceed to the right (towards products).

Given:

Q = 3.56×10⁻⁴

K = 6.02×10⁻²

Since Q (3.56×10⁴) is less than K (6.02×10⁻²), the reaction will proceed to the right towards the products to reach equilibrium.

Therefore, the correct answer is: c. The reaction is not at equilibrium and will proceed to the right.

Complete question:

Ammonia can be produced via the chemical reaction n2(g)+3h2(g)?2nh3(g) during the production process, the production engineer determines the reaction quotient to be q = 3.56×10?4. if k = 6.02×10?2, what can be said about the reaction?

a. The reaction has reached equilibrium.

b. The reaction is not at equilibrium and will proceed to the left.

c. The reaction is not at equilibrium and will proceed to the right.

d. The reaction is not at equilibrium, but it is not possible to determine whether the reaction needs to proceed right or left to reach equilibrium.

Determine the number of protons neutrons and electrons in an isotope that has 21 neutrons and a mass number of 40

Answers

40 protons and 40 electrons

The state of refrigerant as it exits a compressor is a

A. high-pressure liquid.
B. low-pressure liquid.
C. high-pressure vapor.
D. low-pressure vapor.

Answers

The answer is option C.
The state of refrigerant as it exits a compressor is a high pressure vapor.
In a compressor when refrigerant enters, it is a low temperature, low pressure gas or vapors, the function of compressor is to increase the pressure and temperature, so when it exits a compressor it is high pressure vapor and then it goes to condenser.

The refrigerant exits a compressor as a high-pressure vapor due to the mechanical energy applied during compression, which raises both pressure and temperature. Hence, correct option C.

The state of refrigerant as it exits a compressor in a vapor compression system is high-pressure vapor. During the compression phase in vapor compression cooling systems, mechanical energy is applied to the refrigerant, causing both pressure and temperature to rise. This process changes the state of the refrigerant from a low-pressure vapor, which it is when it enters the compressor, to a high-pressure vapor as it exits the compressor. The high-pressure vapor is subsequently cooled and condensed in the condenser, transferring heat to the surroundings and turning into a high-pressure liquid ready to go through the cycle again.

A ______  solution is a solution with as much dissolved solute as it can hold at a given temperature

Answers

Answer: A saturated solution is a solution with as much dissolved solute as it can hold at a given temperature.

Explanation:

Saturated solution: It is a solution in which solute is dissolved in its maximum amount in a solvent at a given temperature. Further addition of solute will not get dissolve in the solution. For : Soda is a saturated solution of carbon-dioxide in water.

Unsaturated solution: It is a solution in which addition of more solute will get easily dissolve in a solution at a given temperature. In unsaturated solution the amount of solute present in less than the amount of solute present in saturated solution. For example: Pinch of salt in a glass of water.



Answer:

saturated

Explanation:

Aqueous sulfuric acid h2so4 will react with solid sodium hydroxide naoh to produce aqueous sodium sulfate na2so4 and liquid water h2o . suppose 89.3 g of sulfuric acid is mixed with 96. g of sodium hydroxide. calculate the minimum mass of sulfuric acid that could be left over by the chemical reaction. be sure your answer has the correct number of significant digits.

Answers

1) Balanced chemical equation

H2SO4 + 2NaOH ---> Na2 SO4 + 2H2O

=> 1 mol H2SO4 : 2 moles NaOH

2) Convert 89.3 g of H2SO4 and 96.0 g of NaOH to moles

Molar mass of H2SO4 = 98.1 g/mol

Molar mass of NaOH = 40.0 g/mol

moles = mass in grams / molar mass

moles H2SO4 = 89.3 g / 98.1 g/mol = 0.910 mol

moles NaOH = 96.0 g / 40.0 g/mol = 2.40 mol

3) Theoretical molar ratio = 2 moles NaOH / 1 mol H2SO4

So, all the 0.91 mol of H2SO4 will be consumed along with 1.820 (2*0.91) moles of NaOH, and 0.580 moles (2.40 - 1.82) of NaOH will be left over by the chemical reaction.

4) Convert 0.580 moles NaOH to mass

0.580 moles * 40.0 g/mol = 23.2 g of NaOH will be left over

Answer:

[tex]\bold{0.580 \;\rm{moles} \times 40.0\;\rm{ g/mol}} = 23.2\; g\; of\; NaOH[/tex] will be left.

Explanation:

Given:

Aqueous sulfuric acid [tex]H_2SO_4[/tex] will react with solid sodium hydroxide NaOH to produce aqueous sodium sulfate [tex]Na_2SO_4[/tex] and liquid water [tex]H_2O[/tex].

Now, balance the molecules of the left part of the equation with the right part of the equation.  

[tex]H_2SO_4 + 2NaOH \rightarrow Na_2 SO_4 + 2H_2O[/tex]

Now, from the above-balanced equation, it is clear that  1-mole sulphuric acid equated with two moles of sodium hydroxide to balance the above equation.

Now,

The weight of sulphuric acid is 89.3 g and the weight of sodium hydroxide is 96 g.

Therefore, convert 89.3 g of [tex]H_2SO_4[/tex] and 96.0 g of [tex]NaOH[/tex] into moles by using the formula,

[tex]\rm{Moles=\dfrac{Given\;weight}{Molar Mass}}[/tex]

Known Quantity:

[tex]\rm{Molar\; mass\; of\;} H_2SO_4 = 98.1\; g/mol[/tex]

[tex]\rm{Molar\; mass\; of\; NaOH = 40.0\; g/mol}[/tex]

Hence,

[tex]\begin{aligned}\rm{Moles\;of\;H_2SO_4}&=\dfrac{89.3}{98.1}\\&=0.910\end{aligned}[/tex]

 

[tex]\begin{aligned}\rm{Moles\;of\;NaOH}&=\dfrac{96}{40}\\&=2.40\end{aligned}[/tex]

[tex]\rm{Theoretical \;molar\; ratio} = \dfrac{2\; moles\; NaOH}{1\; mole\; H_2SO_4}[/tex]

Therefore,

If 0.91 moles react of [tex]H_2SO_4[/tex] then the number of moles required of [tex]NaOH[/tex] for the reaction will be twice as 0.91 moles.  

Moles required of [tex]NaOH[/tex] is 1.82.

Thus,

The remaining moles of NaOH will be (2.40 - 1.82) that is 0.58.

Now,

The weight of 0.580 moles NaOH will be calculated by the below expression:

[tex]0.580 \;\rm{moles} \times 40.0\;\rm{ g/mol} = 23.2\; g\; of\; NaOH \;will\; be\; left.[/tex]

For more information, please refer to the link:

https://brainly.com/question/20486415?referrer=searchResults

During _____ water dissolves a mineal to form a solution

Answers

During Dissolution water dissolves into a mineral to form a solution. 

Sterling silver contains silver and copper metals. if a sterling silver chain contains 22.2 g of silver and 1.80 g of copper, what is the percent of silver?

Answers

22.2+1.8=24

22.2/24=.925

.925x100=92.5%

The reaction below is exothermic: 2so2 (g) o2 (g) 2so3 (g) le châtelier's principle predicts that ________ will result in an increase in the number of moles of so3 (g) in the reaction container.

Answers

The balanced chemical reaction is as given above,

                         2SO2(g) + O2(g) --> 2SO3(g)

This is a reversible reaction. According to Le Chatelier's principle, the things that would allow in the increase of the number of moles of SO3(g) is,

(1) increase in the amount of the reactants which are SO2 and O2
(2) decrease in volume of the vessel to favor only 2 moles SO3 compared to 3 moles when combining 2 moles of SO2 and 1 mole of O2. 
(3) The effect of raising the temperature can be determined if we are given if the reaction is exothermic or endothermic. 

How many orbitals are there in the third shell (n=3)?

Answers

Answer:

9

Explanation:

Hello,

In this case, since the third shell of electrons has  the following 3 subshells:

[tex]3s, 3p \ and \  3d[/tex]

- The [tex]s[/tex] subsehll has one orbital for one pair of electrons: [tex]s^1 \ and \   s^2[/tex].

- The [tex]p[/tex] subsehll has three orbitals for three pairs of electrons: [tex]p^1, \ p^2,\ p^3, \ p^4,\ p^5\ and \ p^6\[/tex].

- The [tex]d[/tex] subsehll has five orbital for five pairs of electrons [tex]d^1, \ d^2,\ d^3, \ d^4,\ d^5,\ d^6,\ d^7,\ d^8,\   d^9\ and \ d^{10}\[/tex].

Therefore, the total number of orbitals when n=3 is:

[tex]1+3+5=9[/tex]

Best regards.

Final answer:

The third shell (n=3) of an atom contains nine orbitals, which are divided into three subshells: 3s, 3p, and 3d containing 1, 3, and 5 orbitals respectively.

Explanation:

The third shell (n=3) of an atom contains nine orbitals. Electron shells are divided into subshells, which are made up of orbitals. For n=3, the subshells are 3s, 3p, and 3d. The 3s subshell contains only one orbital, the 3p subshell contains three orbitals, and the 3d subshell contains five orbitals. So, if you add up the number of orbitals in each subshell (1 for 3s, 3 for 3p, and 5 for 3d), you will find that the third shell has a total of nine orbitals.

Learn more about Atom Orbitals here:

https://brainly.com/question/31684991

#SPJ6

Select all that apply. Which of the following are characteristics of acids? contain hydroxide ion or produce it in a solution taste sour corrode metals produce hydronium ion in a solution

Answers

These are the characteristics that apply:
 
- In a solution taste sour: which is consequence of the H+ concentration.

- Corrode metals: the H+ ion reacts with the metal producing a salt and water

- Produce hydronium ion in solution: as per the Bronsted - Lowry definition an acid is a substance that donates a proton, H+.This proton will react with H2O to form H3O+ (hydronium), as per this scheme:

HA + H2O --> A(-) + H3O(+)

Answer:

-contain hydroxide ion or produce it in a solution

-taste sour

Explanation:

Explain how a redox reacation involves electrons in the same way that a neutralization reaction involves protons

Answers

For the neutralization process: an acid acts as a donor and donates protons to the base. On the other hand, the base acts as an acceptor and accepts the transferred protons. In a nutshell, neutralization is mainly proton transfer process.

As for the redox process: the oxidized material usually transfers electrons to the reduced material. In a nutshell, redox is mainly electron transfer process.
Final answer:

Redox and neutralization reactions both involve the transfer of particles. Redox reactions involve the transfer of electrons, with one component gaining and another losing electrons. Neutralization reactions involve the transfer of protons or hydrogen ions, where an acid donates a proton that a base accepts.

Explanation:

A redox reaction and a neutralization reaction both involve the transfer of particles, but they differ in the type of particle that is transferred. In a redox reaction (which stands for reduction-oxidation), the key particles involved are electrons. During this type of reaction, one atom loses electrons (oxidation) and another atom gains electrons (reduction). For example, when copper reacts with silver nitrate in solution, silver is reduced (gains electrons) and copper is oxidized (loses electrons).

On the other hand, a neutralization reaction is a type of reaction between an acid and a base. Here, the primary particles involved are protons (or hydrogen ions, H+). An acid donates a proton (H+) and a base receives it. For example, when hydrochloric acid (HCl) reacts with sodium hydroxide (NaOH), HCl donates a proton to OH-, neutralizing both the acid and base to form water and a salt.

Learn more about Redox and Neutralization Reactions here:

https://brainly.com/question/31672150

#SPJ6

Which of these alkalis has the most stable fluoride?
a) Sodium
b) Lithium
c) Rubidium
d) Potassium

Answers

The correct option is B. The alkali metals combine directly with halogens forming high melting point crystalline solids that have high negative enthalpies of formation. The entalphy of formation for lithium bromide is the highest and the values decrease down the group, thus, lithium is the most stable while cesium is the least stable. 

The compound HA is an acid that is soluble in water which of the beakers in the picture shows HA behaving as a weak acid in water?

Answers

HA is a weak acid so there should be little amount of HA and then H+ and A- in the beaker so the last one is true a weak acid never converts completely to H+ and A-

Final answer:

To identify the beaker showing HA behaving as a weak acid, we need to look for the beaker in which the concentration of H3O+ and A- is relatively low, indicating partial dissociation.

Explanation:

In the given question, we are asked to identify the beaker that shows the acid HA behaving as a weak acid in water.

A weak acid is one that only partially dissociates in water, creating a small amount of hydronium ions (H3O+) and the conjugate base (A-). Strong acids, on the other hand, completely dissociate into hydronium ions and the conjugate base.

To identify the beaker showing HA behaving as a weak acid, we need to look for the beaker in which the concentration of H3O+ and A- is relatively low, indicating partial dissociation.

Suppose you dissolved 0.123 gram of pentane in 2.493 grams of p-xylene and measured a freezing point depression of 2.88 degrees celcius for the solution. Calculate the molar mass of pentane using this data and the value for Kf that you calculated in question 1

I got .829 mol/kg for question 1

Answers

The formula for freezing point depression is:

ΔT = Kf * m         --->1

Where,

ΔT = change in temperature = 2.88 degrees Celcius

Kf = freezing point molar constant of solvent

m = molality (moles solute/mass solvent)

First we calculate for molality since we are given the mass of solute and solvent.

Molar mass of pentane = 72.15 g / mol

molality m= (0.123 g / 72.15 g / mol) / (2.493 x 10^-3 kg)

m = 0.684 molal

Going back to equation 1:

ΔT = Kf * m

2.88 = Kf * 0.684

Kf = 4.21 degC / molal

 

Value for Kf in question 1 given that m = 0. 829 mol/kg:

2.88 = Kf * 0.829

Kf = 3.47 degC / molal

A jogger runs 107 yd in 10.00 seconds. What would be his time for a 483 m run at the same rate?

Answers

The jogger's speed is first converted to meters per second, and then the time for the 483-meter run is calculated using the speed and the formula time = distance/speed, resulting in approximately 49.38 seconds.

The student's question involves converting units and calculating time based on a given rate of speed. The jogger runs 107 yards in 10.00 seconds, and we need to determine the time it would take for a 483-meter run at the same rate.

Since 1 yard is roughly equivalent to 0.9144 meters, the jogger's speed in meters per second (m/s) can be calculated as: (107 yards × 0.9144 m/yard) / 10 s = 9.77928 m/s.

Now, to find the time for a 483-meter run at the same speed, we use the equation time = distance/speed, which gives us: 483 m / 9.77928 m/s = approximately 49.38 seconds.

which is given as an example for how the paleozic supercontinent ice cap melted?

Answers

 

An example for how the Paleozic supercontinent ice cap melted is through plants dying off, which in turn, increased the greenhouse effect.

 

To add, the trapping of the sun's warmth in a planet's lower atmosphere due to the greater transparency of the atmosphere to visible radiation from the sun than to infrared radiation emitted from the planet's surface is called the greenhouse effect.

Which is a spectator ion involved in the reaction of k2cro4(aq) and ba(no3)2(aq)?

Answers

Answer:

K⁺ and NO₃⁻ are the spectator ions.

Explanation:

First, we will consider the molecular equation because is the easiest to balance.

K₂CrO₄(aq) + Ba(NO₃)₂(aq) → BaCrO₄(s) + 2 KNO₃(aq)

Then, we will write the full ionic equation, which includes all the ions and the molecular species.

2 K⁺(aq) + CrO₄²⁻(aq) + Ba²⁺(aq) + 2 NO₃⁻(aq) → BaCrO₄(s) + 2 K⁺(aq) + 2 NO₃⁻(aq)

Finally, we will write the net ionic equation, which includes only the ions that participate in the reaction and the molecular species. The missing ions are the spectator ones.

CrO₄²⁻(aq) + Ba²⁺(aq) → BaCrO₄(s)

Final answer:

In the reaction between potassium chromate and barium nitrate, the spectator ions are NO3- and K+, as they appear unchanged on both sides of the chemical equation.

Explanation:

The question involves identifying the spectator ion(s) in the reaction between potassium chromate (K2CrO4) and barium nitrate (Ba(NO3)2). When these two aqueous solutions are mixed, a precipitation reaction occurs, forming barium chromate (BaCrO4) as the precipitate, and potassium nitrate (KNO3) remains in solution. Given that spectator ions are those ions that do not participate in the actual chemical reaction but are present in the same form on both sides of the equation, the NO3-(aq) and K+(aq) ions are the spectator ions in this reaction. They are present on both sides of the equation and remain unchanged.

How many hydrogen atoms are in an acyclic alkane with 8 carbon atoms?

Answers

The general formula of acyclic alkane is CnH2n+2. 

When n = 8 : 
Number of hydrogen atoms = 2n + 2 = 18

The number of hydrogen atoms in an acyclic alkane with 8 carbon atoms is 18.

What are alkanes?

Alkanes can be described as organic compounds that contain single-bonded carbon and hydrogen atoms. The general formula for Alkanes is CₙH₂ₙ₊₂. Alkanes are further subdivided into three groups: chain alkanes, cycloalkanes, and branched alkanes.

Alkanes contain carbon and hydrogen atoms with single covalent bonds, which are known as saturated hydrocarbons. All the covalent bonds between carbon and hydrogen atoms are single and have a molecular formula of CₙH₂ₙ₊₂.

The simplest and smaller alkane is methane with one carbon atom and its molecular formula is CH₄.

Given, the number of carbons in the given alkane is equal to eight. Then the value of n is equal to 8.

The number of hydrogen atoms in alkane= 2 (8) + 2 = 18

Therefore, hydrogen atoms in an acyclic alkane are 18.

Learn more about alkanes, here:

https://brainly.com/question/4260635

#SPJ5

Other Questions
Who would study Stonehenge for clues about the society that built it? Mr. Pham wrote the equation below on the board. 18 - 7x = -20.5 What is the value of x? a piano has a mass of 185 kg, and the coefficient of friction between it and the floor is 0.39. What is the maximum force of friction between the piano and the floor?707 N523 N1813 N1208 N Describe the structure and function of the peripheral nervous system Which film won the oscar for "best animated feature" in 2006? What were the four destinations of the first migrating hominids Using Newtons cooling model, what will the temperature of a cup of hot tea be 2 hours after it is poured if its initial temperature is 200F, the surrounding temperature is 70F, and the value for k is 0.6?A.130B.109.16C.109.76D.71.35E.60 Which are common mistakes people make when investing? Check all they apply.They put all of their money into one kind of investment at a time.They divide their funds between more risky and less risky options.They analyze their comfort level with the types of risk they will take.They invest more money than they can afford.They focus heavily on familiar investment opportunities.They hold onto investments longer than they should to recoup losses. At a snack shop, Julie bought 1/3 of a pound of jelly beans for three quarters. What is the unit price of jelly beans at the snack shop? I REALY NEED HELP! A kites diagonals WY and ZX intersect at point V. Which of the following are true? Select all that apply. 1.)WVX = 90 2.)ZVY = 90 3.)WY is parallel to ZX 4.)WY is perpendicular to ZX 5.)WY = ZX Analyze Chart- Which features do you think most affected the daily lives of average people? The developing organism is particularly vulnerable during the _____ because this is when the distinct organ systems are being formed. Angle is in standard position. If (8, -15) is on the terminal ray of angle , find the values of the trigonometric functions. Which classifications apply to the polygon? Check all that apply.convex concave regularhexagon octagon Read the following passage:Each day, hundreds of animals lose their habitat as trees are cut down. Every year, our planet loses an area of forest the size of Panama. When once-fertile soils have been exposed to sun and wind for several years, they turn to desert.Which of the following sentences uses the same type of structure as in the passage? A.It's clear from his tone in chapter 2 that the author dislikes large corporations. B.The patient will immediately spike a fever, followed by fits of chills and sweats. C.Another reason why banks charge fees is to discourage carelessness. D.An example of changing legislation can be seen in the case of Smith v. Ohio. If angle A measures 57 degrees and angle C is adjacent to angle A, what is the measure of angle C if the two angles are complementary? Two trains leave stations 306 miles apart at the same time and travel toward each other. one train travels at 75 miles per hour while the other travels at 95 miles per hour. how long will it take for the two trains to meet? A forensic detective is called to the scene of a murder at 2 am. When she checks the temperature of the body, she sees that it is 80 degrees Fahrenheit. The temperature of the room in which the body is found is 65 degrees. If the detective uses Newton's law of cooling, what will she say is the time of death? T(t)=Ta+(To-Ta)e^(-0.1947t).Thank you to anyone who helps! :) The rate of energy consumption by an animal is called What approach did the Freedom Riders take in order to aid desegregation in the south? Steam Workshop Downloader