78.2% of the students study more that one day for the chapter test. Find the probability that a randomly selected student did not study more than one day for the test.
A. 0.218 (this one is right)
B. 0.782
C. 0.328
D. 0.391

Answers

Answer 1

Answer:

A

Step-by-step explanation:

Total is ALWAYS 100%.

It says that 78.2% DO STUDY. It means the REST (100-78.2) DO NOT STUDY.

What is 100 - 78.2 ? It is 21.8%

To get the answer in decimal, we divide by 100:

[tex]\frac{21.8}{100}=0.218[/tex]

Hence, A is the correct answer.


Related Questions

Graph The function f(x) = -(x - 2)^2 +4 Make sure to label the vertex and the intercepts

Answers

See the attachment for a labeled graph.

_____

I find it convenient to use "technology" to draw the graph. A spreadsheet, graphing calculator, or on-line graphing program can do this for you.

I need help plz plz plz help me ASAP. And SHOW YOUR WORK

Answers

r= 8

C= 2,5•r+15
C= 2,5•8+15
C= 20+15
C= 35


Nina's total cost will be 35 $, £, € (i don't know which of them)

Answer:

The cost of the wristband for 8 rides is $35.

Step-by-step explanation:

The expression for the cost, C, for r rides is

C = 2.5r + 15

Since she wants to go on 8 rides, r is 8.

Substitute r with 8 in the cost equation and evaluate it.

C = 2.5r + 15

C = 2.5 * 8 + 15

C = 20 + 15

C = 35

The cost of the wristband for 8 rides is $35.

Find the values of x and y that satisfies the equation.

5x + 3i = 15 + yi

Answers

Answer:

So the value of x=3  and y =3

Step-by-step explanation:

5x + 3i = 15 + yi

To find out x   , set the constant terms  equal to each other and solve for x

5x= 15

Divide by 5 on both sides

x= 3

To find out y   , set the ';i' terms  equal to each other and solve for y

3= y

So the value of x=3  and y =3

Answer:  The required value of x is 3 and that of y is 3.

Step-by-step explanation:  We are given to find the values of x and y that satisfies the following equation :

[tex]5x+3i=15+yi~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We know that

[tex]a+bi=c+di~~~~~~~~~\Rightarrow a=c,~b=d.[/tex]

That is, the real and parts on both sides of the equation are equal.

From equation (i), we have

[tex]5x+3i=15+yi.[/tex]

Equating the real and imaginary parts on both sides of the above equation, we get

[tex]5x=15\\\\\Rightarrow x=\dfrac{15}{5}\\\\\Rightarrow x=3[/tex]

and

[tex]3=y\\\\\Rightarrow y=3.[/tex]

Thus, the required value of x is 3 and that of y is 3.

Find a recursive formula for the sequence:

3, -5, 11, -21

Answers

The correct option is the last:

[tex] a_n = -2a_{n-1}+1 [/tex]

In fact, every term in the sequence is one more than twice the opposite of the previous one:

We start with 3. Twice its opposite is -6. Plus one, we get -5.

We start with -5. Twice its opposite is 10. Plus one, we get 11.

We start with 11. Twice its opposite is -22. Plus one, we get -21.

The recursive formula is: [tex]a_n-a_{n-1} = (-8)(-1)^n \times (2)^{n-2}[/tex]

To find a recursive formula for the given sequence, we need to determine the relation between consecutive terms.

Let's denote the sequence as an, where:

[tex]a_1 = 3\\a_2 = -5\\a_3 = 11\\a_4 = -21\\[/tex]

First, let's calculate the differences between consecutive terms:

[tex]a_2 - a_1 = -5 - 3 = -8\\a_3 - a_2 = 11 - (-5) = 16\\a_4 - a_3 = -21 - 11 = -32[/tex]

We observe that each difference is a multiple of 8 and that each difference is twice the previous difference but with alternating signs.

The recursive formula can be defined as:

[tex]a_n-a_{n-1} = (-8)(-1)^n \times (2)^{n-2}[/tex]

Thus the recursive formula is: [tex]a_n-a_{n-1} = (-8)(-1)^n \times (2)^{n-2}[/tex]

Sandy has 18 roses, 9 daisies, and 45 tulips. She wants to arrange all the followers in bouquets. Each bouquet has the same number of flowers and same type of flower. What is the greatest number of flowers that could be in a bouquet?

Answers

Using the smallest number she has, 9 daisies..

18/9 = 2

45/9 = 5

She can make 9 bouquets with 2 roses, 1 daisy and 5 tulips in each.

That means each bouquet would have 8 total flowers.

Write three different fractions that are less than 40%?

Answers

1/5
1/3
8/100

Three fractions that are less than 40%.
Answer:

1/3, 1/4, 1/5

Step-by-step explanation:

40% = 40/100 = 2/5

Any fraction with a numerator of 2 and a denominator larger than 5 will be less than 40%, for example.

So, we can choose 2/6 = 1/3, 2/8 = 1/4, and 2/10 = 1/5 as some such values.

_____

We could also choose something like 39.99% = 3999/10000, or 1% = 1/100.

To the nearest whole degree, what angle measure has a tangent of 2.0874?

Answers

To find an angle measure, you would do inverse tan.

[tex] { \tan }^{ - 1} (2.0874)[/tex]
You may need to hit the second button on your calculator to get this function.

Your answer turns up to be 64.402~~~~.

Rounded, the answer is 64 degrees.

Hope this helps!

:)

The total revenue for Fred's Estates LLC is given as the function R(x)=200x−0.4x2, where x is the number of rooms booked. What number of rooms booked produces the maximum revenue?

Answers

The number of rooms booked to produce maximum revenue is required.

The number of rooms booked to produce the maximum revenue is 250.

The revenue function is

[tex]R(x)=200x-0.4x^2[/tex]

Differentiating with respect to x we get

[tex]R'(x)=200-0.8x[/tex]

Equating with zero

[tex]0=200-0.8x\\\Rightarrow x=\dfrac{-200}{-0.8}\\\Rightarrow x=250[/tex]

Double derivative of the function is

[tex]R''(x)=-0.8x[/tex]

Substituting the value of [tex]x=250[/tex]

[tex]R''(250)=-0.8\times 250=-200[/tex]

Since, it is negative the maximum value of x will be 250.

The number of rooms booked to produce the maximum revenue is 250.

Learn more:

https://brainly.com/question/24896699

https://brainly.com/question/2150186

Final answer:

The number of rooms that produces the maximum revenue for Fred's Estates LLC is 250 rooms, calculated using the formula -b/2a, where a and b are the coefficients of the quadratic revenue function.

Explanation:

To calculate the maximum revenue for Fred's Estates LLC, we need to find the value of x that maximizes the function [tex]R(x)=200*-0.4x2.[/tex]

The maximum value of a quadratic function can be found using the formula -b/2a, where a and b are the coefficients of x² and x in the function. Here, a=-0.4 and b=200.

Using the formula, [tex]x=-b/2a = -200/(2*(-0.4)) = 250[/tex] rooms. Therefore, booking 250 rooms results in the maximum revenue for Fred's Estates LLC.

Learn more about Maximum Revenue here:

https://brainly.com/question/30236294

#SPJ3

what is the solution to the system of equations?

Answers

I would plug in each of the solutions to every equation and see which one works. This is probably easier than solving for x, y, and z. But let me know if you would like me to run through the steps!

First choice: using the first equation, -3(-3)-4(4)+6=-19 not -1 as listed. False.

Second choice: using the first equation, -3(4)-4(-3)+(-1)=-1 ; using the second equation, 2(4)+(-3)-(-1)=6 not -8 as listed. False.

Third choice: using the first equation, -3(-3)-4(4)+8=-17 not -1 as listed. False.

Fourth choice: using the first equation, -3(3)-4(-4)+-(-6)=-1 ; using the second equation,
2(3)+(-4)-(-6)=8 ; using the third equation, 3+8(-4)-(-6)=23

So the answer should be the fourth choice. Hope this helps! :)




Mrs.Wheeler is looking to make a deposit of $2500 dollars into the savings account
that earns simple interest at a rate of 2.02% per year. How many years will it take for her account to reach $3000 if she does not deposit or withdraw any money.

Answers

Answer:

9.9 years

Step-by-step explanation:

A = P(1 + rt) . . . . account balance after time t at rate r starting with principal P

... 3000 = 2500(1 + 0.0202t) . . . . filling in the given numbers

... 1.2 = 1 + 0.0202t . . . . divide by 2500

... 0.2 = 0.0202t . . . . . . subtract 1

... 0.2/0.0202 = t ≈ 9.901

It will take about 9.9 years for the account balance to reach $3000.

What is the area of a section of pavement that is 20 ft wide and 70 yd long?

Answers

Answer:

A = 4200 ft^2

Step-by-step explanation:

We know the formula for area is

A = l*w

We need to have the same units

convert yd to ft

1 yd = 3ft

Multiply each by 70

70 yds = 210 ft

A = 210 *20

A = 4200 ft^2



Final answer:

The area of the pavement section is 4200 square feet, computed by converting the length to the same unit as the width and multiplying width by length.

Explanation:

The subject of this question is the calculation of the area of a rectangle. The rectangle in question is a section of pavement with a width of 20 ft and a length of 70 yd. Before calculating, it's important to have the measurements in the same units. Converting 70 yards to feet (since 1 yard equals 3 feet) we get 210 feet. The formula to calculate the area of a rectangle is Area = Width x Length. Substituting the given values into the formula, we get: Area = 20 ft x 210 ft which equals 4200 square feet. Therefore, the pavement section's area is 4200 square feet.

Learn more about Area Calculation here:

https://brainly.com/question/34380164

#SPJ3

A cylindrical metal pipe has a diameter of 20 millimeters and a height of 21 millimeters. A cylindrical hole cut out of the center has a radius of 6 millimeters.Which expressions represent the volume of metal needed, in cubic millimeters, to make the pipe? Check all that apply.


options:



21π(10)2 – 21π(6)2



π(20)2(21) – π(6)2



2,100π – 756π



7,644π



1,344

Answers

Answer:21π(10)^2 – 21π(6)^22,100π – 756πStep-by-step explanation:

The volume of metal is the difference of the overall volume of the cylinder and the volume of the hole in it. The formula for the volume of a cylinder is ...

... V = π·r^2·h . . . . . radius r and height h

For the overall dimensions, the radius is half the diameter, so is 10 mm. The hole is said to have a radius of 6 mm. The overall "height" is 21 mm, so the volume in mm³ will be ...

... V_overall -V_hole = π(10)^2(21) -π(6)^2(21)

... = 21π·10^2 -21π·6^2 . . . . . . . matches the first selection

... = 2100π -756π . . . . . . . . . . . matches the third selection

... = 1344π . . . . . . . . . . . . . . . . doesnt' match any selection

The correct expressions for the volume of metal needed, in cubic millimeters, to make the pipe are,

⇒ 21π(10)² – 21π(6)²

⇒ 2,100π – 756π

What is Multiplication?

To multiply means to add a number to itself a particular number of times. Multiplication can be viewed as a process of repeated addition.

Given that;

A cylindrical metal pipe has a diameter of 20 millimeters and a height of 21 millimeters.

And,  A cylindrical hole cut out of the center has a radius of 6 millimeters.

Hence, The formula for the volume of a cylinder is,

V = π·r²·h

Where, radius r and height h.

Now, For the overall dimensions, the radius is half the diameter, so is 10 mm. The hole is said to have a radius of 6 mm. The overall "height" is 21 mm,

so the volume in mm³ will be;

V (overall) -V (hole) = π(10)²(21) -π(6)²(21)

= 21π·10² -21π·6²

= 2100π -756π

= 1344π

Thus, The correct expressions for the volume of metal needed, in cubic millimeters, to make the pipe are,

⇒ 21π(10)² – 21π(6)²

⇒ 2,100π – 756π

Learn more about the multiplication visit:

https://brainly.com/question/10873737

#SPJ5

Which description best defines the line FG⎯⎯⎯⎯⎯ ? the set of all points that are the same distance from point F as point G the set of all points between point F and point G the set containing point F and point G the set of all points between point F and point G, including point F and point G

Answers

Answer:

the set of all points between point F and point G, including point F and point G

Step-by-step explanation:

The definition of a line segment is the set of points on a line between two given end points, including those end points. The best description is the one that matches the definition.

Answer:

the set of all points between point F and point G, including point F and point G

Step-by-step explanation:

If necessary, use / for the fraction bar.



The diagram shows a green to pink ratio value of

Answers

Answer:

2/5

Step-by-step explanation:

There are 2 units of green and 5 units of "pink," so the ratio is ...

... green/pink = 2/5

A customer placed an order with a bakery for cupcakes. the Baker has completed 37.5% of the order after being 81 cupcakes how many cupcakes with a customer order

Answers

Answer:

216 cupcakes

Step-by-step explanation:

81 = 0.375 × order

81/0.375 = order = 216 . . . . . divide by the coefficient of the variable

_____

About percentages

% means /100

37.5% = 37.5/100 = 375/1000 = 0.375

Operations with Complex Numbers

Answers

Answer:

B. -9/4 -4i

Step-by-step explanation:

Collect terms the way you would with any algebraic expression.

= (-3 +2 -3)i + (3/4 -3)

= -4i +(3/4 -12/4)

= -9/4 -4i

The product of the complex numbers [tex]\( (3 - 2i) \)[/tex] and [tex]\( (1 + i) \)[/tex] is [tex]\( 5 - 4i \)[/tex].

To find the product of two complex numbers, we multiply them as we would with binomials, remembering that [tex]\( i^2 = -1 \)[/tex]. Let's perform the multiplication step by step:

Given complex numbers [tex]\( (3 - 2i) \)[/tex] and [tex]\( (1 + i) \)[/tex], we multiply them directly:

[tex]\[(3 - 2i) \cdot (1 + i) = 3 \cdot 1 + 3 \cdot i - 2i \cdot 1 - 2i \cdot i. \][/tex]

Now, we simplify the expression by combining like terms and using the fact that [tex]\( i^2 = -1 \)[/tex]:

[tex]\[ = 3 + 3i - 2i - 2i^2 = 3 + i - 2(-1) = 3 + i + 2. \][/tex]

Finally, we combine the real parts and the imaginary parts:

[tex]\[ = (3 + 2) + i = 5 - 4i. \][/tex]

Therefore, the product of the complex numbers [tex]\( (3 - 2i) \)[/tex] and [tex]\( (1 + i) \)[/tex] is[tex]\( 5 - 4i \)[/tex].

The angle of elevation from a soccer ball on the ground to the top of the goal is 34. If the goal is 8 feet tall, What is the distance from he ball to the goal?

Answers

Answer:

The distance from he ball to the goal is 11.85 feet (Approx) .

Step-by-step explanation:

As given

The angle of elevation from a soccer ball on the ground to the top of the goal is 34° .

If the goal is 8 feet tall.

Now by using the trigonometric identity .

[tex]tan \theta = \frac{Perpendicular}{Base}[/tex]

As shown in the diagram given below

[tex]\theta = 34^{\circ}[/tex]

Perpendicular = AB = 8 feet

Base = BC

Put all the values in the identity .

[tex]tan\ 34^{\circ} = \frac{AB}{BC}[/tex]

[tex]tan\ 34^{\circ} = \frac{8}{BC}[/tex]

[tex]tan\ 34^{\circ} = 0.675\ (Approx)[/tex]

[tex]BC = \frac{8}{0.675}[/tex]

BC = 11.85 feet (Approx)

Therefore the distance from he ball to the goal is 11.85 feet (Approx) .


To calculate the distance from the soccer ball to the goal with an angle of elevation of 34 degrees and a goal height of 8 feet, use the tangent trigonometric ratio. The distance is found to be approximately 11.86 feet.

Given the angle of elevation is 34 degrees and the goal's height is 8 feet, we're looking to calculate the adjacent side (distance from the ball to the goal) in a right-angled triangle where the opposite side (goal's height) and the angle are known.

To calculate the distance (let's call it d), we use the tangent function:

tan(angle of elevation) = opposite/adjacenttan(34 degrees) = 8/d

So, d = 8/tan(34 degrees).

Calculating this, we find:

d ≈ 8/0.6745d ≈ 11.86 feet

Therefore, the distance from the soccer ball to the goal is approximately 11.86 feet.

Jim needs to rent a car. A rental company charges $21.00 per day to rent a car and $0.10 driven. for every mile . He will travel 250 miles. . He has $115.00 to spend. Write an inequality that can be used to determine d, the maximum number of days that Jim can re ays that Jim can rent a car

Answers

Answer:

21d +25 ≤ 115

Step-by-step explanation:

Jim's cost will be ...

... 21.00·d + 0.10·250 = 21d +25

He wants his cost not to exceed his budget, so ...

... 21d +25 ≤ 115

_____

The solution is ...

... 21d ≤ 90 . . . . subtract 25

... d ≤ 90/21 ≈ 4.3

so Jim can rent the car a maximum of 4 days.

The inequality that can be used to express this scenario is

115 ≤  21*d+ 25

Given data

Charges = $21 per day

Cost per driven distance = $0.10

Distance he will travel = 250 miles

Amount her has to spend = $115

Let the maximum number of days Jim can rent a car with $115 be "m"

Hence

Total amount = 21*d+ 0.1*250

Substituting and Simplifying we have

115 ≤  21*d+ 25

Learn more about inequality here:

https://brainly.com/question/24372553

50 POINTS!! A 96-ounce container of juice costs $4.80. At what price should a 128-ounce container be sold in order for the unit rate for both items to be the same? Explain your reasoning.

Answers

Answer:

$6.40 because 32 ounces is the difference 128 and 96 hence 32 is 1/3 of 96 so divide $4.80 by 3 which is $1.60 then add $1.60 + $4.80 =$6.40

Step-by-step explanation:


what is the solution to the equation -0.2(x-20)=4-x

Answers

Answer:

x=0

Step-by-step explanation:

-0.2(x-20)=4-x

The first step is to distribute the -.2

-.2 x -.2 * -20 = 4-x

-.2x +4 = 4-x

Add x to each side

x-.2x +4 = 4-x+x

.8x +4 = 4

Subtract 4 from each side

.8x +4-4 = 4-4

.8x=0

Divide by .8

.8x/.8 = 0/.8

x =0

Explain how to solve the equation: b-7 =12

Answers

Answer:

19

Step-by-step explanation:

b - 7 = 12

b = 7 + 12

b = 19

Hi there! :)

Answer:

b=19

*The answer must have a positive sign.*

Step-by-step explanation:

Lesson: Addition/Subtraction/Multiplication/ and Division property of equality

First, you add by 7 from both sides of an equation.

[tex]b-7+7=12+7[/tex]

Then, you add by the numbers from left to right.

[tex]12+7=19[/tex]

Final answer is b=19

I hope this helps you!

Have a nice day! :)

:D

-Charlie

Thank you so much! :)

Derek established his own retirement account 10 years ago. He has discovered that he can obtain a better rate for the next 10 years at 12 percent interest compounded semiannually. Consequently, Derek established a new ordinary annuity account (beginning amount $0.00) and he will contribute $7,000.00 semiannually into the account for the next 10 years. What will be the value of this account at the end of the 10-year period?


$83,652.59 $244,707.61 $257,502.00 $264,501.86

Answers

Answer:

https://brainly.com/question/10687203

Step-by-step explanation:


a 18 ft tall statue standing next to a globe casts a 12 ft shadow. Of the globe casts a shadow that is 2 ft ling, then how tall is it?

Answers

Answer:

3 ft

Step-by-step explanation:

The statue's height is 1.5 times the length of its shadow, so we expect the same relationship for the globe.

... 1.5 × 2 ft = 3 ft

_____

Comment on the problem

As a practical matter, with the sun high enough in the sky to cast a shadow shorter than the object's height, it will be quite difficult to measure the length of the shadow of the point at the top of the globe. The shadow of other parts of the globe will interfere.

Segment AN is the altitude to side BC in ΔABC. If AB = 3NC and AN = 2NC, prove that AC = BN. (Hint: Use variables in such problems. Let NC = x units and find the other lengths in terms of x.)

Answers

Answer :

The proof is as follows :

Step-by-step explanation:

Let NC = x

⇒ AB = 3x and AN = 2x

In Δ ABN, By using Pythagoras theorem,

AB² = BN² + AN²

⇒ BN² = AB² - AN²

⇒ BN² = (3x)² - (2x)²

⇒ BN² = 5x²

⇒ BN = x√5  .......................(1)

Now in ΔANC , Using Pythagoras theorem We have,

AC² = NC² + AN²

⇒ AC² = x² + (2x)²

⇒ AC² = 5x²

⇒ AC = x√5   ....................(2)

From equations (1) and (2) We get,

AC = BN , which is our required result


Answer:

BN=AC=√5 x.

The proof is explained in step-by-step explaination.

Step-by-step explanation:

Let NC=x. It is given that AB=3NC & AN=2NC

AB=3x & AN=2x

By applying Pythagoras theorem

In triangle ANC,

[tex]AC^{2}=AN^{2}+NC^{2}[/tex]

⇒ [tex]AC^{2} = (2x)^{2}+x^{2}[/tex]

⇒ [tex]AC^{2}=4x^{2}+x^{2} =5x^{2}[/tex]

[tex]AC=\sqrt{5}x[/tex]   →    (1)

Similarly, In triangle ABN,

[tex]AB^{2}=AN^{2}+BN^{2}[/tex]

⇒ [tex](3x)^{2}=BN^{2}+x^{2}[/tex]

⇒ [tex]9x^{2} = (BN)^{2}+4x^{2}[/tex]

⇒ [tex]BN^{2}=5x^{2}[/tex]

[tex]BN=\sqrt{5}x[/tex]   →   (2)

From eq (1) & (2),    AC=BN


Can someone please answer this for me i cant figure it out.

Answers

Answer:

[tex]\displaystyle x^{\frac{2}{3}}[/tex]

Step-by-step explanation:

The rules of exponents tell you ...

... (a^b)(a^c) = a^(b+c) . . . . . . applies inside parentheses

... (a^b)^c = a^(b·c) . . . . . . . . applies to the overall expression

The Order of Operations tells you to evaluate inside parentheses first. Doing that, you have ...

... x^(4/3)·x^(2/3) = x^((4+2)/3) = x^2

Now, you have ...

... (x^2)^(1/3)

and the rule of exponents tells you to multiply the exponents.

... = x^(2·1/3) = x^(2/3)

Answer:

x^(2/3)

Step-by-step explanation:

(x^a.x^b)^c = x^[c*(a+b)]

using the above eqn, u can simplify the given expression to

x^[1/3*(4/3+2/3)]

=x^[1/3*(6/3)]

=x^(2/3)

ans is the 2nd choice

A cardboard box has a square base and an open top. the four sides are made of wood that costs 2 dollars per square foot, while the base is made of aluminum that costs 25 dollars per square foot. if the volume of the box is to be 50 cubic feet, what is its minimum possible cost?

Answers

Answer:

$300

Step-by-step explanation:

Let x represent the side length of the square base in feet. Then the height of each side is ...

... h = (50 ft³)/(x ft)² = (50/x²) ft

The cost of the sides of the box is then ...

... (4 sides) × (x ft)(50/x² ft)/side × $2/ft² = $400/x

The cost of the bottom is ...

... (x ft)² × $25/ft² = $25x²

So, the total dollar cost is

... C = 400/x + 25x²

This will be a minimum where its derivative with respect to x is zero.

... 0 = -400/x² +50x

... 400/50 = 8 = x³ . . . . . add 400/x²; multiply by x²/50

... x = ∛8 = 2

For this value of x, the minimum cost is ...

... C = 400/2 + 25·2² = 300

The minimum possible cost is $300.

_____

Comments on the problem

1) Cardboard boxes are usually made of cardboard. They are rarely made of wood and alumninum.

2) The cost of the bottom is half the cost of the sides. When the dimensions are unconstrained, you will find (as here) the cost is shared equally between the bottom and pairs of opposite sides—each being 1/3 the total cost.

What is the point slope form of the line with slope -3/7 that passes through the point (5, 8)?

Answers

ANSWER:

Your answer is the 3rd one: y - 8 = -3/7(x - 5)

ABOUT POINT SLOPE FORM:

y - Y1 = m (x - X1)m is the slopeY1 & X1 is a point on the lineThe form allows you to identify the slope & the point on the line

ABOUT PROBLEM:

-3/7 represents m in the slope intercept form5 represents X18 represents Y1

y - Y1 = m (x - X1)

y - 8 = -3/7(x - 5) --- IN POINT SLOPE FORM


Hope this helps you!!! :)

The line with a slope -3/7 and passes through the point (5, 8) has an equation of y - 8 = (-3/7)(x - 5)

The equation of a straight line is given by:

y = mx + b;

where y,x are variables, m is the slope of the line and b is the y intercept.

Since the line has a slope -3/7 and passes through the point (5, 8), the equation of the line is:

[tex]y-y_1=m(x-x_1)\\\\y-8=-\frac{3}{7} (x-5)[/tex]

Hence a line with a slope -3/7 and passes through the point (5, 8) has an equation of y - 8 = (-3/7)(x - 5)

Find out more at:: https://brainly.com/question/16588670.

A recipe calls for ​ ​1 /4 ​​ start fraction, 1, divided by, 4, end fraction cup of chocolate chips for each batch of cookies. Alonzo has 1/2 ​​ start fraction, 1, divided by, 2, end fraction cup of chocolate chips. How many batches of cookies can Alonzo make?

Answers

Answer:

2

Step-by-step explanation:

1/2 cup = 2/4 cups = 2 × 1/4 cup

Alonzo can make 2 batches that each require 1/4 cup.

A college survey was taken to determine where students study. Of 147 students​ surveyed, 92 studied in the cafeteria​, 86 studied in the student lounge​, 40 studied in both the cafeteria and the student lounge. Of those interviewed how many did not study in either the cafeteria or the student lounge​?

Answers

9 students did not study in either the cafeteria or the student lounge.

How to find the number

To find the number of students who did not study in either the cafeteria or the student lounge, we solve as follows

Let

C = 92

L = 86

C ∩ L = 40

We find the number in either C, L or C ∩ L

= (92 - 40) + (86 - 40) + 40

= 52 + 46 + 40

= 138

The number  did not study in either the cafeteria or the student lounge

= 147 - 138

= 9

I WILL MAKE YOU THE BRAINLIEST EASY QUESTION For the visual model below, draw lines dividing each individual section into two equal parts. Then write a fraction representing the revised visual model. Do not reduce or simplify the fraction.



Answers

Answer:

see attached

Step-by-step explanation:

Each of the pie slices can be cut in half different ways. An easy way to do it and to understand it is to draw another cut from the center to the middle of the edge.

The result of cutting these slices is that instead of 8 equal pieces (of which 3 are colored), there will be 16, of which 6 are colored.

The new fraction is 6/16.

Other Questions
PLEASE DONT GUESS I HAVE TO GET THIS RIGHT!!!! The Clean Water Act was passed 40 years ago in _______ to protect our water resources.A. Mexico B. AmericaC. England D. Canada ( 85 x 6 ) - 69 thanks (: ________ is composed of multiple globular molecules polymerized to form long chains or filaments.A. ActinB. TropomyosinC. TroponinD. MyosinE. Titin According to the narrator of A Visit to Europe, which belief did the British hold about Indian marriages? A.Indian women held more power than their husbands. B.Indian men had hundreds of wives. C.Indian women disliked motherhood. D.Indian parents arranged loveless marriages for money. PLZ HELP URGENT 30 POINTS!!!!!Which of the following functions maps 3 to -5F(x)=4-x^2F(x)=x-5F(x)=-x+2F(x)=x+8 Analyze the key features of the graphs of the functions below. Select all of the quadratic functions that open down, have a vertex that is a maximum and a positive y-intercept. f(x) = 2x2 - 4x - 3g(x) = - x2 + x + 1h(x) = -2x2 + 3x - 1 m(x) = x2 -9 n(x) = -3x2 + 7 please help me asap! Charlene sold 15 magazines subscriptions for the fundraiser. Mark sold 17 subscriptions and Paul sold 12. How many magazine subscriptions did they sell in all?Let s represent subscriptionsEquation:______They sold_____ subscriptions in all. Thinking along lines of heredity family, why was James I crowned king of England? mara es guatemalteca. Ella es de A developer has 7 1/2 acres of land to build houses on. If each house is to be built on 1/4 acre plot, how many houses can he build? 40 Jenny is buying gifts for her family. So far she has spent $45,95, and she has one more gift to buy. She started with a total of $60 to spend on all of her gifts Write an inequality that shows how much she can spend on the final gift Which is a complex sentence? A) The Nike shoes were the most expensive pair of sneakers in the whole store. B) Some of the natives thought that having a photograph taken also stole a person's soul. C) Janet was embarrassed by her brother's performance, but she stayed for the whole game anyway. D) The rebels ran a complex organization of secret espionage. There are 96 coins in a bottle. 1\2 of the coins are 1 coins. The rest of the coins are 50p coins. work out the total value of the 96 coins I need help with this The sum of the speeds of two trains is 718.7 miles per hour. If the speed of the first train is 3.3 mph faster than that of the second train, find the speeds of each. A dog weighs 260 Newtons. What is her mass? Read the passage. Then answer the question that follows. The journey to Canaan took 40 years of wandering in the wilderness. Along the way, Moses went to Mount Sinai, where he spoke with God. God gave him the Ten Commandments, which were laws that the people should follow. When the people finally arrived in Canaan, they started rebuilding the city of Jerusalem and practicing their religion. Based on this passage, what is one reason that the Exodus is important to Judaism? A. The Israelites were freed from their cruel captors, the Egyptians. B. The Israelites decided where they would create their kingdom. C. The Israelites received a set of moral laws that showed the people how to behave. D. The Israelites named Moses their first king to unite them. E. The Israelites enjoyed a time of prosperity without invaders attacking them. It takes the Earth 24 hours to complete a full rotation. It take Saturn approximately 10 hours, 39 mintues, and 24 seconds to complete a full rotation. How many minutes does it take Saturn to complete a full rotation? Show your work using the correct conversion factors. ll the members of a construction crew work at the same pace. Six of them working together are able to pour foundation in 22 hours. a How many hours would this job take if the number of workers decreased by factor of 2? Here is the new question, plz solve this one for me